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1 Introduction

The study of percolation initially arose in the natural sciences, namely physics,
chemistry and materials science. In physics percolation refers to a physical
process that describes a transition of a system from one state to another, with
a special focus on the appearance of an infinite size cluster corresponding to
significant changes in the physical properties of the system. In chemistry and
materials science percolation is understood as the movement and filtering of
fluids through porous materials.

Mathematical percolation theory is the study of the structure and be-
haviour of random subgraphs generated by a probability measure on a given
starting graph G. This master thesis has the goal to study certain classes of
bond percolation on infinite trees, as their structure allows a more concise
classification, and the question of the existence of an infinite cluster after
percolation (the ”physical view” of percolation).

The thesis starts with a characterization of infinite, locally finite and
leafless trees in section 2.2. Based on the concepts of flows and cutsets in
section 2.3 the branching number of a tree is introduced as a characteristic
of its structure. It will be shown that for certain classes of percolations the
branching number is the determining factor of their critical values.

A shot at probability theory is taken in section 3. Among the techniques
the coupling of different Bernoulli random variables from section 3.2, later
needed for independent bond percolation, and the crucial 0 − 1 law from
Kolmogorov in section 3.3 are indispensable to the later proofs.

Percolation is introduced in section 4, first in a totally general fashion as
a probabiliy measure on the set of subgraphs of a given graph G and then
restricting ourselves to the class of k-independent bond percolations on infi-
nite, locally finite and leafless trees. After showing the connection between
Kolmogorov’s 0−1 law and the question of the existence of an infinite cluster
for a percolation in theorem 70 we introduce the tools needed to investigate
percolation on trees: the switch between rooted and unrooted percolation
(theorem 78), first and second moment methods (section 4.4) and random
paths with exponential intersection tails in section 4.5 (see [9] and [11] for
background on them).

Section 5 is an uptake of independent bond percolation, mostly follow-
ing the treatment in [9]. It is self-contained, using only the methods from
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section 4 and not using explicitely the connection between network theory,
homesick random walks on trees and percolation as in [9]. Its culmination is
the determination of the critical value for independent percolation in terms
of the branching number (see theorem 102 on page 34)

1-independent percolation on trees after the works of Bollobas and Balis-
ter [2] is treated in section 6: phase transition occurs here not at one value,
but within a certain range (see figure 6 on page 64). To obtain the results
we resuse the results from independent percolation and moment methods to-
gether with different Bernoulli models (see section 6.7).

This master thesis ends with some smaller results which can be gener-
alized to k-independent percolation (section 7) and after a summary of the
results in section 8.1 there is an outlook on open questions in section 8.2.
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2 Graphs and trees

In this section I treat all the definitions and properties of graphs and claims,
especially about infinite, locally finite, leafless trees, which can be derived
from their combinatorial properties, needed in this work.

2.1 Basics on graphs

In this section one can find all the notation and definitions which are valid
for general graphs, whereas those applicable only to trees are to be found in
section 2.2.

Definition 1 A graph is a pair G = (V,E), where V is the countable set of
vertices (also called nodes or sites) and E is a symmetric subset of V ×V ,
called the edge set (also called bonds). We say that G is finite iff V is
finite, else G is called infinite.

For the remainder of this subsection let G = (V,E) be a graph.

Definition 2 Two nodes x, y ∈ V are considered to be adjacent iff
(x, y) ∈ E and are called the endpoints of the edge e = (x, y). Similarly,
two edges e, f ∈ E are called incident iff they have at least one common
endpoint. Note that incidence and adjacency are transitive relations.

Definition 3 Take a second graph H = (V ′, E ′). We say that G is a sub-
graph of H and equivalently H a supergraph of G iff there exists an injec-
tion f : V → V ′ which preserves adjacency and incidence, called an embed-
ding of G into H. G and H are called isomorph iff they are embeddable
into each other.

Definition 4 G is called a directed graph if we designate for each edge
e ∈ E an orientation (therefore E being any subset of V × V ).

Definition 5 We call the graph H constructed from G by creating a node
for each edge in E and an edge for each couple of incident edges in E the
line graph of G.

Definition 6 We call a sequence of subgraphs {Gn = (Vn, En)}n∈N ex-
haustive iff it is ordered for set inclusion and

⋃
n∈NGn = G.

Definition 7 For a node x ∈ V , we denote by deg(x) the number of nodes
adjacent to x, called the degree of x. We call G locally finite iff ∀x ∈ E :
deg(x) <∞ and uniformly bounded iff ∃ d ∈ N : ∀x ∈ E : deg(x) ≤ d.
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Definition 8 We call a path a sequence of edges in which each edge is
incident to the next and previous ones in the sequence. Its length is defined
to be the number of edges it traverses and subsequently it is called either
finite or infinite. For two nodes x, y ∈ V we write x↔ y if there exists a
path with endnodes x and y (and vice-versa, therefore being an equivalence
relation). A cycle is a path of length greater than 1 having the same start-
and endnode. We call a path self-avoiding if it doesn’t visit any node or
edge twice. It has unit speed if it contains a shortest path between all pairs
of edges it contains and is cycleless, implying that it is self-avoiding. Finally
a ray is an infinite path with unit speed.

Definition 9 The equivalence classes of V under connectedness are called
connected components or clusters of G. We call G connected if it
consists of only one connected component.

Definition 10 For v, w ∈ V the node distance |v − w| is the length of the
shortest path from v to w. For two arcs e, f ∈ E the arc distance it is the
minimum of the shortest distances between any of their endnodes plus 1.

It’s plain to see that these two distances are metrics taking values only in N.
The following definition is taken from page 78 of [1].

Definition 11 We call a subset Q of the set of all graphs which is closed
under graph isomorphism a property of graphs. A property Q is mono-
tone increasing if whenever G has Q and H is a supergraph of G obtained
by adding edges to G, then H has Q too. A monotone decreasing property
is defined in a similar manner by the removal of edges.

An example of monotone increasing properties is connectivity of the graph
and for decreasing properties it would be cyclelessness of the graph.

2.2 Basics on trees

Definition 12 A tree T = (V,E) is a cycleless, connected graph. A graph
whose connected components are all trees is called a forest.

Consequently there is always an unique shortest path between any two nodes
of T and T is always a forest consisting of itself.

Definition 13 If v has degree 1 then we call it a leaf. A tree T is said to
be leafless iff none of its nodes is a leaf, implying in particular that T is
infinite.
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Definition 14 T is called r-regular if ∀ v ∈ V : deg(v) = r.

Definition 15 A rooted tree is a tree T with a distinguished node o, called
the offspring or root.

For the remainder of this section I assume T to be a rooted tree with root
o, not excluding other conditions imposed on T by the following definitions.
When picturing rooted trees we always place the root at the top with the
rest of the tree spreading downwards (like in a family tree).

Definition 16 For each node v we call the distance |v − o| = lv the level of
v. The set of all nodes with level n ∈ N is written as Tn = {v ∈ V : lv = n}.

Definition 17 In each rooted tree we have a canonical vertex-edge bi-
jection between the nonroot vertices and edges of T . For all v ∈ V \{o} we
denote by e(v) the first edge lying on its shortest path towards the root and
for e ∈ E we denote by v(e) the endpoint of e which is closer to the root.

Definition 18 For v ∈ V \{o}, the parent of v, denoted by p(v), is the
unique neighbour of v with lp(v) + 1 = lv. We call ancestors of v the set
{p(v), p(p(v)), . . . , o}. For v, w ∈ V we denote by v ∧ w the common root
of v and w, that means the common ancestor of v and w having the highest
level.

Definition 19 For v ∈ V we define {w ∈ V : p(w) = v} as the set of chil-
dren of v. The cardinality of this set is denoted by rv and called the rank of
v. It’s plain to see that rv = 0⇒ deg(v) = 1⇒ v is a leaf. Likewise, we call
the set containing all children of v, their children, . . . and so on ad infinitum
the offspring of v.

Definition 20 Through the child/parent relation the canonical partial or-
der on T can be defined. For v, w ∈ V we can write v ≤ w if w is a node on
the unique path between v and the root o, including them, and v < w if v is
in the offspring of w or w is an ancestor of v.

Definition 21 For v ∈ V we denote by T v the subtree induced by v,
formed by taking v and all its offspring and the arcs connecting them, effec-
tivly creating a new rooted tree with root v.

Definition 22 For n ∈ N we denote by T |n the restricted subtree formed
by taking all nodes v with lv ≤ n and the arcs connecting them.

Definition 23 We denote by Υ(o) the set of all rays emanating from o.
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Definition 24 If T is leafless we denote by the border ∂T of T the union
of Υ(o) with the set of leaves of T . Note that if T is leafless, then ∂T = Υ(o)
and if T is finite then ∂T is just the set of leaves of T .

Definition 25 If T is finite it is called a tree with n ∈ N full levels if
∂T = Tn, meaning that all of its leaves are on the nth level.

Definition 26 Let N ≥ 0. Let T be infinite and rooted at o, then we call it

N-periodic⇔∀ v ∈ V : ∃ fv : T v → T f(v) adjacency-preserving

bijective and lf(v) ≤ N

N-subperiodic⇔∀ v ∈ V : ∃ fv : T v → T f(v) adjacency-preserving

injective and lf(v) ≤ N

N-superperiodic⇔∀ v ∈ V : ∃ fv : T → T f(o) adjacency-preserving

injective, f(o) ∈ T v and lf(o) − lv ≤ N

T is (sub-/super-)periodic if it is so for some N ∈ N.

2.3 Flows and cutsets

The concepts of flow and cutset are applicable in the context of general
graph, too. I just introduce the notation and relations between them as far
as necessary in the context of trees. Let T = (V,E) be a leafless tree rooted
at o ∈ V . We start with

Definition 27 A function f : V → R is called a (sub-/super-)flow from
o to infinity if

∀ v ∈ V : f(v) = (≥ / ≤)
∑

{w:p(w)=v}

f(w)

and is nonnegative iff ∀ v ∈ V : f(v) ≥ 0. We call the value St(f) = f(o)
the strength of f and f the unit flow iff f(o) = 1. By the canonical vertex-
edge bijection 17 we can change from a flow on V to a flow on E without
any problems.

Definition 28 We call Π ⊆ E a cutset separating o from infinity if
the connected component of o in T ′ = (V,E\Π) is finite. We call Π a min-
imal cutset (for set inclusion) if ∀ e ∈ Π: the connected component of
o in T ′ = (V,E\(Π\{e})) is infinite. We also denote the vertex-cutset
v(Π) = {v(e) : e ∈ Π} bijectively defined by Π.
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Proposition 29 Assume T to be locally finite. Let Π be a cutset separating
o from infinity, then there exists a minimal cutset Π′ ⊆ Π such that |Π′| <∞.

Proof. Let C be the connected component of o in T ′ = (V,E\Π). Take
Π′ = {e ∈ Π : ∃ v ∈ V (C) : e incident to v}. Now finiteness of C in connec-
tion with the local finiteness of T implies the finiteness of Π′. �

Definition 30 For T locally finite we denote by Π(o) the set of all minimal
cutsets separating o from infinity on T .

So from now on we can talk safely about using only minimal, finite cutsets
in the context of locally finite trees.

Definition 31 Let Π be a cutset on T . We define the tree cut at Π

T |Π = (E|Π = {w ∈ V : ∃ v ∈ v(Π) : w ≤ v}, {e ∈ E : v(e) ∈ E|Π}),

consisting of the finite connected component of o in T determined by Π in-
cluding Π and the vertex-cutset v(Π).

Definition 32 Let {Πn}n∈N be a sequence of cutsets on T . We call it an
exhaustive sequence of cutsets, if the sequence of {T |Πn}m∈N is an ex-
haustive sequence of subtrees of T .

Next we explore the relationship between flows and cutsets.

Proposition 33 Let Π be a minimal cutset and f be a (nonnegative) func-
tion on v(Π), then

∀w ∈ V (T |Π) : f(w) =
∑

{w≤v∈v(Π)}

f(v) (1)

determines a flow on T |Π uniquely.

Proof. This is proved by a recursion on w starting at ∂T |Π = v(Π).
w ∈ v(Π): f(w) =

∑
{w≤v∈v(Π)} f(v) as Π is minimal.

w 6∈ v(Π): Assume that (1) holds for all children wi of w, then

f(w) =
r∑
i=1

f(wi) =
r∑
i=1

∑
{wi≤v∈v(Π)}

f(v) =
∑

{w≤v∈v(Π)}

f(v)

using the disjointness of the subtrees starting in the wi. �
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Proposition 34 Let f be a flow and Π a minimal cutset, then

St(f) =
∑
{e∈Π}

f(v(e)). (2)

Proof. Apply proposition 33 to o and Π. �

The following theorem is due to Ford and Fulkerson [5]:

Theorem 35 (Max-Flow Min-Cut) Let c be a function from E → R+

and T rooted at o, then

max
f flow

∀ e∈E: 0≤f(e)≤c(e)

St(f) = inf
Π∈Π(o)

∑
e∈Π

c(e). (3)

Next we define a weighted quadratic form of a flow f .

Definition 36 Let c be a function from E → R+. Then the energy of f
with respect to c is defined as

E(f)c =
∑
e∈E

f 2(v(e))

c(e)
. (4)

The following proposition, giving a sufficient condition for a flow having finite
energy is taken from [9], proposition 2.22, page 51.

Proposition 37 (Finite flow energy) Let {wn}n∈N be a positive sequence
such that

∑
n∈Nwn = W <∞ and f a flow with 0 ≤ f(v) ≤ wlvc(e(v)), then

E(f)c ≤ St(f)W.

Proof.

E(f)c

=
∑
e∈T

f(v(e))2

c(e)

=
∑
n∈N

∑
e∈E: lv(e)=n

f(v(e))
f(v(e))

c(e)

≤
∑
n∈N

∑
v∈V : lv=n

f(v)wn by the assumption

=
∑
n∈N

wn
∑

v∈V : lv=n

f(v)

=
∑
n∈N

wnSt(f) by proposition 34

= St(f)W

�
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Lemma 38 (Nash-Williams) Root T at o. Let {Πn}n∈A ⊂ Π(o) be an
exhaustive sequence of pairwise disjoint cutsets, where A ⊆ N is finite if T is
finite. Let f be a unit flow from o and c : E → R+. Then we have

E(f)c ≥
∑
n∈A

(∑
e∈Πn

c(e)

)−1

. (5)

Proof. We start with showing that forall Π ∈ Π(o) we have by Cauchy-
Schwarz:

1 =

(∑
e∈Π

f(e)

)2

=

(∑
e∈Π

f(e)√
c(e)

√
c(e)

)2

≤
∑
e∈Π

f(e)2

c(e)

∑
e∈Π

c(e),

hence we arrive at

E(f)c =
∑
e∈E

f(e)2

c(e)
≥
∑
n∈A

∑
e∈Πn

f(e)2

c(e)
≥
∑
n∈A

(∑
e∈Πn

c(e)

)−1

.

�

2.4 Branching number of a tree

Next an important concept which will be used over and over again: λ-flows
on rooted trees. Let T = (V,E) be an infinite and locally finite tree, then

Definition 39 A nonnegative flow f from o ∈ V on T is called a lambda-
flow for λ > 0 iff ∀ v ∈ E : f(v) ≤ λ−lv .

Definition 40 Let T be a tree rooted at o. Then its branching number
with respect to o is defined by

br(o, T ) = sup {λ > 0 : ∃λ-flow on T} (6a)

= sup {λ > 0 : inf
Π∈Π(o)

∑
e∈Π

λ−lp(v(e)) > 0}. (6b)

The equality between (6a) and (6b) is a result of theorem 35. The branching
number of a rooted tree a is a kind of average rank of the nodes (see figure 1).
This can be easily seen in the case of r-regular trees, for which the branching
number is exactly r− 1 (upon rooting, all nodes except the root o have rank
r − 1 and the root o has rank r).

Proposition 41 br(T ) = br(o, T ) is independent of the root o.
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Figure 1: The rank 2 tree on the left has branching number 2, the tree on the
right, with 2 and 3 children on alternating levels has branching number

√
6.

Proof. Any two different choices for the root o, u ∈ V are only a finite
distance of each other. We show that the branching number is the same for
adjacent nodes, from which the result can be obtained for any distance by
iterating over the path between o and u. For λ < br(o, T ) let f be a λ-flow
from o. Let u be a child of o. Define a λ-flow g from u by

g(v) =


f(o)−f(u)

δ
v = o

f(o)+f(u)
δ

v = u
f(v)
δ

else,

where δ = max {λ, λ
f(o)−f(u)

}. Hence br(o, T ) ≤ br(u, T ), which results in

br(o, T ) = br(u, T ) by symmetry. �

I want to remark that the br(T ) of a tree equals the logarithm of the Hausdorff-
Dimenstion of ∂T projected onto [0, 1] (see [6]).

Proposition 42 The branching number is a monotone increasing property
of infinite trees.

Proof. Take a second infinite and locally finite tree T ′ = (V ′, E ′) being a
supertree of T . Select a root o ∈ V and for λ < br(T )) take a λ-flow from o.
f is clearly also a λ-flow on T ′, hence br(T ) ≤ br(T ′). �

Proposition 43 1 ≤ br(T ).
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Proof. Take a single ray – it has branching number 1. As it is contained in
any infinite tree and the branching number is a monotone increasing property
of trees the result follows. �

Proposition 44 If T contains a leaf w, then it can be prunned without af-
fecting the value of br(T ).

Proof. For λ < br(T ) take any λ-flow f from o. Now define a flow g from
o by

g(v) =

{
f(v)− f(w) w ≤ v

f(v) else,

effectively removing the amount f(w) from all ancestors of w. g is again
a λ-flow on T ′ = (V \{w}, E\{e(w)}), hence br(T ′) ≥ br(T ). The reverse
inequality is derived from the fact that T ′ is a subtree of T and by proposition
42. �

Lemma 45 If ∃ o ∈ T , such that if T is rooted at o, there exist at least
two disjoint rays emanating from o, then prunning all leaves from T doesn’t
change the branching number of T .

Proof. Use proposition 44 to recursively prune all leaves from T . We have
to demand two disjunct rays to exclude the degenerate cases with only one
ray where recursive prunning would result in the empty tree. �

2.5 Growth of trees

Definition 46 Let T be a locally finite, infinite tree rooted at o. We define
the lower/upper growth rate of T by

gr(T ) = lim inf
n→∞

|Tn|
1
n (7a)

gr(T ) = lim sup
n→∞

|Tn|
1
n (7b)

and call it the growth rate gr(T ) of T iff gr(T ) = gr(T ).

Proposition 47 We have

br(T ) ≤ gr(T ) ≤ gr(T ). (8)
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Proof. Using 6b we show that

br(T )

= sup {λ > 0 : inf
Π∈Π(o)

∑
e∈Π

λ−lp(v(e)) > 0}

≤ sup {λ > 0 : inf
n∈N

∑
v∈Tn

λ−lp(v) > 0}

= sup {λ > 0 : inf
n∈N
|Tn|λ−n > 0}

= sup {λ > 0 : ∃ cλ > 0, Nλ ∈ N : ∀n ≥ Nλ : |Tn| ≥ cλλ
n}

= sup {λ > 0 : lim inf
n→∞

|Tn|
1
n ≥ λ}

= lim inf
n→∞

|Tn|
1
n

= gr(T ).

�

One can construct trees such that br(T ) < gr(T ) rather easily, for such an
example see [9], page 4, example 1.2. The following two theorems are taken,
too, from [9], pp 56–57, section 2.8, and are here stated without proof.

Theorem 48 For every subperiodic tree T we have br(T ) = gr(T ) <∞ and
the existence of a br(T )-branching flow on T .

Theorem 49 Any superperiodic tree T with gr(T ) < ∞ satisfies br(T ) =
gr(T ).

Corollary 50 If br(T ) = gr(T ) then

∃C, c > 0 : ∀n ∈ N : c(br(T ))n ≤ |Tn| ≤ C(br(T ))n. (9)
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3 Probability

This section is dedicated to introduce all the notations and theorems, except
the very foundational notations like σ-algebra, measure or random variable,
related to general probability and (a bit of) measure theory which are needed
throughout the rest of this work.

3.1 Reminders on probability and measure theory

The content of this section is paraphrased from [12]. Without really mention-
ing it in the future, we will always work over the probability space (Ω,A,P ).
Random variables are always measurable with respect to A. Furthermore
expectation is denoted by E and indicator functions for any set A by 1A.
For two random variables X and Y we denote by X⊥Y the fact that they
are independent and by X 6⊥Y the contrary.

Lemma 51 (Cauchy-Schwarz) Let X, Y be R-valued random variables such
that EX2 <∞ and EY 2 <∞, then

(EXY )2 ≤ EX2EY 2.

Theorem 52 (Fubini) Let (X,AX , µ) and (Y,AX , ν) two spaces with their
σ-algebras and measures on them. Let f be a AX ⊗AY -measurable function
such that

∫
X×Y |f(x, y)|dµ× ν(x, y) <∞, then∫

X

∫
Y

f(x, y)dµ(x)dν(y) =

∫
Y

∫
X

f(x, y)dµ(y)dν(x).

Theorem 53 (Carathéodory) Let X be a space, A be an algebra of its
subsets and Aσ = σ(A) be the smallest σ-algebra containing A. Let ν0 be
a σ-additive measure on (X,A), then there exists a unique measure ν on
(X,Aσ) which is an extension of ν0, that means ∀A ∈ A : ν0(A) = ν(A).

Definition 54 The sequence {Xn}n∈N of random variables converges in

probability to the random variable X, written as Xn
P−−−→

n→∞
X, iff

∀ ε > 0 : P (|Xn −X| > ε) −−−→
n→∞

0.
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3.2 Coupling and ordering Bernoulli random variables

The content of this section is taken from [7].

Definition 55 Take two R-valued random variables X and Y . We say that
X is stochastically less than Y (written as X≤stY ) iff

∀ c ∈ R : P (X > c) ≤ P (Y > c).

Next we describe how to couple a random variable X∼ Bernoulli(p) to a
random variable Y∼ Unif([0, 1]) with uniform distribution over the unit in-
terval: simply couple them by setting X = 1{Y >p}. We show a little propo-
sition demonstrating the relationship between different Bernoulli(p) random
variables coupled to the same Unif([0, 1]).

Proposition 56 Let X∼ Bernoulli(p), X ′∼ Bernoulli(p′) both be coupled to
Y∼ Unif([0, 1]), then we have

p < p′⇔X<stX
′ and p ≤ p′⇔X≤stX ′. (10)

Proof. It’s plain to see from the coupling described above. �

Proposition 57 Let Xpn∼ Bernoulli(pn), X∼ Bernoulli(p) be both coupled
to Y∼ Unif([0, 1]), then

pn −−−→
n→∞

p⇒Xpn

P−−−→
n→∞

Xp. (11)

Proof. Let ε > 0 and suppose pn < p, then we have

P (|Xpn −Xp| > ε) = P (p− ε ≥ pn < Y ≤ p) ≤ |pn − p| −−−→
n→∞

0.

�

3.3 Kolmogorov’s 0− 1 law

This section is taken from [12], chapter IV.1, pp 379–381.

Definition 58 Take {Xi}i∈N be a sequence of independent random variables.

Let A
j
1 = σ(X1, . . . , Xj) and A∞j = σ(Xj, Xj+1, . . .) = σ(

⋃∞
i=j Ai

k) then the
tail σ-algebra of {Xi}i∈N is defined as

A∞ =
∞⋂
i=1

A∞i .

We call A a tail event iff A ∈ A∞, that means an event which is independent
of any finite subset of {Xi}i∈N.
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Theorem 59 (Kolmogorov’s 0− 1 law) Take the setting of definition 58.
Let A ∈ A∞. Then

P (A) ∈ {0, 1}.

We omit the proof as the next theorem is an extension of Kolmogorov’s 0−1
law 59 for locally dependent variables which subsumes the former theorem.

Definition 60 We call a family of random variables {Xi}i∈N locally de-
pendent iff ∀ i ∈ N : |{j ∈ N : Xi 6⊥Xi}| <∞.

Theorem 61 (Extension of Kolmogorov’s 0− 1 law) For any locally de-
pendent family random variables and any event A in their tail σ-algebra we
have

P (A) ∈ {0, 1}.

Proof. First we adapt our σ-algebras accordingly. Define by Di =
{Xj : Xi 6⊥Xj} the finite set of dependencies ofXi. Then set A

j
1 = σ(

⋃j
i=1 Di),

A∞j = σ(
⋃∞
i=j Di) and the tail σ-algebra A∞ =

⋂∞
i=1 A∞i .

Now take an event A ∈ A∞. Define ∀ i ∈ N : Zi = E [1{A}|Ai
1], which is

a martingale, as

E [Zi+1|Ai
1] = E [E [1{A}|Ai+1

1 ]|Ai
1] = E [E [1{A}|Ai

1]|Ai+1
1 ] = E [1{A}|Ai

1] = Zi.

Furthermore for each i, there exists a

j(i) = min {j : ∀X Ai
1-measurable∀Y A∞j -measurable : X⊥Y }

such that A∞j(i) independent of Ai
1, therefore A is independent of Ai1. Hence

∀ i ∈ N : Zi = P (A) is constant. As A ∈ A∞ ⊆
⋃∞
i=1 A∞1 Zi converges in L1

and almost surely to Z∞ = 1{A}, thus

∀ i ∈ N, ∀XAi
1-measurable : E [Z∞X] = E [1{A}X].

By taking X = Zi we get

P (A)2 = E [1{A}P (A)] = E [Z∞Zi] −−−→
i→∞

E [Z∞] = E [1{A}] = P (A).

The only solutions of the above equation are P (A) = 0 or P (A) = 1. �

18



3.4 K-independent random variables

The following definition is taken from [2], the rest is simple calculus.

Definition 62 Let {Xi}i∈N be a family of random variables and let
d : N2 → R+ be a distance function over the indices. We call the family
k-independent iff ∀A,B ⊂ N:

d(A,B) = min {d(a, b) : a ∈ A, b ∈ B} > k ⇒ {Xa}a∈A⊥{Xb}b∈B.

I want to point out that a 0-independent family of random variables is just
the special case of an independent family of random variables.

Definition 63 We denote for p ∈]0, 1[ and k, l ∈ N by {Xi}li=1 a linear
k-independent family of Bernoulli(p) random variables, where the distance
function is d(i, j) = |i− j| (think of the variables indexed by {1, . . . , n}).

In the following we will use such random variables and derive an upper bound
on joint probabilities of them.

Proposition 64 Let {Xi}li=1 be as above, then we have

P (X1 = . . . = Xl = 1) ≤ pd
l

k+1e. (12)

Proof.

P (X1 = . . . = Xl = 1)

≤ P (X1 = Xk+2 = X2k+3 = . . . = X1+(k+1)b l
k+1c = 1)

= p1+b l
k+1c = pd

l
k+1e.

�
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4 Percolation

Take a graph G = (V,E). Percolation is the study of the comportment of
the clusters of random subgraphs G(ω) of G. We are especially interested in
the macroscopic behaviour of G(ω): what is the probability of it containing
an infinite cluster? In this context we say that we ”percolate” iff we have a
cluster of infinite size in G(ω).

Closely connected to this is the notion of critical probabilities – bounds
on almost sure existence, respectively non-existence, of such an infinite clus-
ter. This leads to other questions such as the behaviour of the percolation
at the critical probability, called the phase transition or the properties of
the infinite cluster after percolation has taken place.

4.1 Definition of percolation

Definition 65 Given a countable set A with a transitive relation over A
(which can be represented by a directed graph) we can characterize percola-
tion on A by either

1. a family of Bernoulli random variables {Xa}a∈A with

∀ a ∈ A : P (Xa = 1 = open) + P (Xa = 0 = closed) = 1

2. or a probability measure on {0, 1}|A|, the power set of A.

On setting Xa = 1{a(ω)=1} one easily sees the equivalence of the two charac-
terizations. For a ∈ A we denote by

Ra = {b ∈ A : b related to a via a finite sequence of relations}, (13)

quietly assuming that ∃ a ∈ A : Ra = A. We are now interested in the event

{ω : ∃ a ∈ A : ∃F ⊆ Ra(ω) : |F | =∞} = {∃ cluster of ∞ size in A}. (14)

We say that a percolation percolates if we are in the above event. Note
that if the relation on A is symmetric, then A can be represented as a graph,
otherwise as a directed graph. Percolation then can be seen as a proba-
bility measure over the set of (directed) subgraphs of the initial (directed)
graph representation of A. Finally, an important class of percolations worth
mentioning is

Definition 66 We call a percolation P on A a percolation with param-
eter p iff

∀ a ∈ A : P (Xa = 1) = p.
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4.2 Percolation on graphs

We now take a graphG = (V,E). There are many ways to classify percolation
measures on G, following are the ones needed throughout the rest of this
paper. A first classification is based on which the set A is used:

Definition 67 Let P be a percolation on G. Then we call P

a node/site percolation ⇔ V = A (via node adjacency) (15a)

an edge/bond percolation ⇔ E = A (via edge incidence) (15b)

Here we use the fact that incidence and adjacency (see 2) are equivalence
relations, implying that they are symmetric and transitive. I want to remark
that any bond percolation on G can be expressed as a site percolation on
the line graph (see 5) of G (see [8], section 1.6, page 24). In the following we
only talk about bond percolations, but the definitions stay the same for site
percolations.

Definition 68 Let P be a percolation on E. Then we call P k-independent
if the distance function is the canonical arc distance on E. Furthermore we
distinguish between real k-independent percolations, which are percola-
tions being k but not k − 1-independent and full k-independent percola-
tions, which are percolations which satisfy the additional property: ∀ e, f ∈
E : |e− f | ≤ k⇒Xe 6⊥Xf .

Note that 0-independent percolation is synonymous to independent percola-
tion.

Definition 69 In the following, for a graph G = (V,E) and p ∈ [0, 1] we will
use Ckp(E) to denote the class of all k-independent bond percolations
with parameter p on E and similarly for site percolation Ckp(V ). If k = 0
then k might be omitted. Similarly, percolations in the above classes are
written like Pkp(E) as an example for a k-independent bond percolation
with parameter p.

Next we state a theorem which is used as an important building block for
later proofs:

Theorem 70 (0− 1 law for k-independent percolation) On any locally
finite graph G = (V,E) and for any percolation P ∈ Ckp(V ) or P ∈ Ckp(E) we
have

P (P percolates) ∈ {0, 1}.
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Proof. Let B = {ω : P percolates} be the event defined in (14). Clearly
it is in the tail σ-algebra of the random variables {Xa}a∈A, as it doesn’t
depend on the state of finitely many elements Xa (where A may be V or E).
As G is locally finite and the {Xa}a∈A are k-independent they are also locally
dependent (see definition 60), therefore one can conclude by the extension of
Kolmogorov’s 0− 1 law 61. �

4.3 Percolation on trees

For discussing bond percolation on trees we assume T = (V,E) to be an
infinite and locally finite tree. Furthermore let P ∈ Ckp(E), for finite k. The
first thing that we show is that we can assume without loss of generality
leaflessness of the trees.

Proposition 71 If T contains a node w which is a leaf, it can be prunned
without changing the percolation behaviour of P on T .

Proof. Root T at o 6= w and let T ′ = (V \{w}, E\{e(w)}) be the tree of
which w has been prunned. As by theorem 61 the event that P percolates on
T is is independent of the finite set {Xv : |v − w| ≤ k}, hence it is the same
event on T ′. Applying theorem 70 yields the desired result. �

Proposition 72 If T can be rooted at a node o such that there are at least
two distinct rays from o, then prunning all leaves from T doesn’t change the
percolation behaviour of T .

Proof. Use proposition 71 to recursively prune all leaves from T . The
condition of having at least two rays guarantees that we don’t prune the
whole tree. �

So from now on we can safely assume that T is leafless. The next step is
exploring the connection between percolation on the rooted tree and the tree
itself. Starting with a definition:

Definition 73 Let T be rooted at o. Consider the percolation P ∈ Ckp(E).
Let n ∈ N and w ∈ T |n, then we call the event

On
w = {ω : ∃ v ∈ Twn−lw(ω) : w↔ v} = {w↔n}

”w has a downpath to level n”, that means only using edges in its induced
subtree and paths to nodes in Tn. Similarly the event

Ow = {w↔∞} = {ω : ∃ ray from w in Tw(ω)}

is simply called ”w has a downray”.
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Notation 74 Based on definition 73 we introduce the following notation:

P (On
w) = ξnw F n

w = (On
w)c P (F n

w) = ηnw
P (Ow) = ξw Fw = Oc

w P (Fw) = ηw

and furthermore for w 6= o: Ew = {ω : e(w) closed in T (ω)} the event that
the edge e(w) is closed.

Next we see how to switch between percolation on the rooted tree and reach-
ing for all Π ∈ Π(o) ∂T |Π from the root o.

Proposition 75 Let T be rooted at o. Then for any percolation P ∈ Ckp(E)
and any w ∈ V we have ⋂

n≥lw

On
w = Ow (16a)

On
w

P−−−→
n→∞

Ow (16b)

Proof. We start by proving (16a):
⊇: If there is a downray from w, then its first n edges form a downpath of
length n to level n (as a ray doesn’t use edges twice it can only descend down
the tree). As this can be done ∀n ∈ N the claim follows.
⊆: Now take ω ∈

⋂
n≥lw O

n
w⇒∀n ≥ lw : ∃Pn, which is a path from w to level

n. Now starting with w and descending recursively we start the following
procedure: as T is locally finite, there are only finitely many children of w,
hence there exists a child wi of w through which infinitely many of these
paths {Pn}n≥lw pass. Recurse on that child wi. We get an infinite sequence
of nodes, respectively open edges, which form a ray.
To prove (16b) we only have to use (16a) and observe that {On

w}n≥lw is a
decreasing sequence of events. �

Corollary 76 Let T be rooted at o, P ∈ Ckp(E) be any percolation, {Πm}m∈N
any sequence of exhausting cutsets of T and w ∈ V , then we have:⋂

m≥m(w)

OΠm
w = Ow (17a)

OΠm
w

P−−−→
m→∞

Ow (17b)

Proof. OΠm
w is of course the event of having a downpath down to the cutset

Πm. Now set m(w) = minm∈N {T |lw ⊆ T |Πm}, which exists as {Πm}m∈N is ex-
haustive. For m ≥ m(w) take n(m) = maxn∈N {T |n ⊆ T |Πm}. The sequence
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{n(m)}m∈N is monotone increasing as {Πm}m∈N is exhaustive. Furthermore
Ow ⊆ OΠm

w as all downrays from w have to pass by Πm, hence

Ow ⊆
⋂

m≥m(w)

OΠm
w ⊆

⋂
m≥m(w)

On(m)
w =

⋂
n≥lw

On
w = Ow,

which proves (17a). (17b) follows from the fact that {OΠm
w }m∈N is a decreas-

ing sequence of events. �

Theorem 77 We have

Oo =
⋂

Π∈Π(o)

OΠ
o , (18a)

and

P (o↔∞) = ξo = inf
Π∈Π(o)

ξΠ
o = inf

Π∈Π(o)
P (o↔Π) (18b)

Proof. The one direction is clear as Oo ⊆ OΠ
o for any Π ∈ Π(o). The

other one follows from applying corollary 76 with any exhaustive sequence of
cutsets {Πm}m∈N. �

And finally the link between percolation on rooted trees to percolation on
the unrooted tree itself.

Theorem 78 Let P ∈ Ckp(E), for finite k. Then

(∃ v ∈ V : ξv > 0)⇔P (P percolates on T ) = 1, (19a)

(∀ v ∈ V : ξv = 0)⇔P (P percolates on T ) = 0. (19b)

Proof. As the two statements are equivalent, we will just prove (19a).
⇒ : Take v ∈ V such that P (Ov) > 0. The downray from v forms an infinite
cluster, hence P percolates on T with nonzero probability and by theorem
70 with probability 1. In set theoretic notation this is:

∀ v ∈ V : Ov ⊆ O⇔
⋃
v∈V

Ov ⊆ O⇔Oc ⊆
⋂
v∈V

Oc
v

⇐ : Root T at o ∈ V . We now regard the random variable mo, designat-
ing the node of the infinite cluster having the highest level (being closest to
the root o). We now have

P (P percolates on T ) = 1⇒P (mo ∈ V ) = 1⇒∃w ∈ V : P (mo = w) > 0
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which by the preceding equation and on setting o = w results in

ξw = P (Ow) =
∑
v∈V

P (Ow,mw = v) ≥ P (Ow,mw = w) = P (mw = w) > 0.

�

As percolation creates a random subgraph of a general graph it creates a
random forest from a tree (see figure 2). To study the macroscopic behaviour
of it, especially the existence of an infinite tree within the random forest, we
define two values which are of principal interest for its characterization:
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����
• • • • •

• • • • • P +3 • • • • •

• • • • • •
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????
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Figure 2: Random forest after percolation. Edges marked ”. . . ” in the right graph
have been deleted by the percolation P.

Definition 79 For k ∈ N and T a leafless, locally finite tree with finite
branching number define the critical values of T as

pkmax(T ) = inf
p∈[0,1]

{∀Pkp(E) ∈ Ckp(E) : Pkp(E) percolates} (20)

pkmin(T ) = inf
p∈[0,1]

{∃Pkp(E) ∈ Ckp(E) : Pkp(E) percolates} (21)

Lemma 80 For any tree T we have

. . . ≤ p2
min(T ) ≤ p1

min(T ) ≤ p0
min(T ) ≤ p0

max(T ) ≤ p1
max(T ) ≤ p2

max(T ) ≤ . . . .

Proof. p0
min(T ) ≤ p0

max(T ) follows straight from definition 79. For the
other inequalities note that we have

C2
p(E) ⊆ C1

p(E) ⊆ . . . ⊆ Ckp(E) ⊆ . . .

which implies ∀ k ∈ N : pk+1
min (T ) ≤ pkmin(T ) ∧ pkmax(T ) ≤ pk+1

max(T ). �
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4.4 Moment methods

In this section I present the 1st and 2nd moment methods as shown in [9],
sections 4.2/4.3, pp 101. The 2nd moment method uses weighted energies of
probability measures on cutsets to give upper bounds for ξΠ

o and therefore
ξo, while the 1st moment method yields lower bounds.
Let T be a locally finite, leafless tree rooted at o with finite branching number.
Let P ∈ Ckp(E), for finite k. Denote the connected component of o under
percolation by C(o). For an edge e write PC(o)(e) = P (e ∈ C(o)).

Proposition 81 (1st moment method) Under these settings we have

ξo = P (o↔∞) ≤ inf
Π∈Π(o)

∑
e∈Π

PC(o)(e) (22)

Proof. For any Π ∈ Π(o) we have

OΠ
o = {o↔Π} = {∃ e ∈ Π : e ∈ C(o)} ⊆

⋃
e∈Π

{e ∈ C(o)}

which, using (18a), results in

Oo = {o↔∞} =
⋂

Π∈Π(o)

OΠ
o ⊆

⋂
Π∈Π(o)

⋃
e∈Π

{e ∈ C(o)}.

�

Definition 82 For all Π ∈ Π(o) and µ ∈ M1(Π) define the percolation
function of µ by

χ(µ) =
∑
e∈Π

µ(e)
1{e∈C(o)}

PC(o)(e)
. (23)

Proposition 83 The percolation function has the following properties:

Eχ(µ) = 1 (24a)

Eχ(µ)2 =
∑
e,f∈Π

µ(e)µ(f)
PC(o)(e, f)

PC(o)(e)PC(o)(f)
(24b)

Proof. First we prove (24a):

Eχ(µ) = E
∑
e∈Π

µ(e)
1{e∈C(o)}

PC(o)(e)
=
∑
e∈Π

µ(e)
PC(o)(e)

PC(o)(e)
=
∑
e∈Π

µ(e) = 1.
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For (24b) we show that

Eχ(µ)2

= E

[∑
e∈Π

µ(e)
1{e∈C(o)}

PC(o)(e)

]2

=
∑
e,f∈Π

µ(e)µ(f)E
1{e∈C(o)}1{f∈C(o)}

PC(o)(e)PC(o)(f)

=
∑
e,f∈Π

µ(e)µ(f)
PC(o)(e, f)

PC(o)(e)PC(o)(f)

�

Definition 84 Define the percolation edge kernel of P at Π by

κΠ : Π2 → R+ (e, f) 7→ κΠ(e, f) =
PC(o)(e, f)

PC(o)(e)PC(o)(f)
. (25)

The percolation edge kernel factors the common part out of (24b). Note that
it is symmetric in its arguments, which allows us to define:

Definition 85 We call the second moment of χ(µ) the energy of µ be-
cause of its resemblance to a quadratic form. Its value is

E(µ) =
∑
e,f∈Π

µ(e)µ(f)κΠ(e, f). (26)

Lemma 86 (2nd moment method) Under these settings we have

ξo = P (o↔∞) ≥ inf
Π∈Π(o)

sup
µ∈M1(Π)

1

E(µ)
. (27)

Proof. First we note that

{χ(µ) > 0} = {∃ e ∈ Π : e ∈ C(o)} = {o↔Π},

which, with the help of Cauchy-Schwarz 51, we use to show that

1 = 12 = E 2χ(µ) = E 2[χ(µ)1{χ(µ)>0}] ≤ Eχ(µ)2E [1{χ(µ)>0}]
2

= Eχ(µ)2P (χ(µ) > 0) ≤ E(µ)P (o↔Π),

hence P (o↔Π) ≥ 1
E(µ)

from which, using (18b), we deduce that

ξo = P (o↔∞) = inf
Π∈Π(o)

ξΠ
o ≥ inf

Π∈Π(o)
sup

µ∈M1(Π)

1

E(µ)
.

�
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4.5 Random paths and exponential intersection tails

Here we explore the connection between probability measures on Υ(o) and
the 2nd moment method. Note that in the context of trees rays are equivalent
to paths having unit speed and also to self-avoiding paths. This section is
based, with slight modifications, on [11], sections 10 and 11. Let T be a
locally finite, leafless tree rooted at o with finite branching number. We first
start with a useful bijection between flows and measures on rays.

Definition 87 Let ψ, ϕ ∈ Υ(o) and Π ∈ Π(o). Then we denote the ray
stopped at Π by ϕΠ, which is the part of ϕ lying in T |Π, and similarly by
ψN the ray stopped at level N , which are the first N edges of ψ starting
from o. Furthermore we denote by ψ ∧ ϕ the splitting node of ψ and ϕ,
which is the node with the lowest level in ψ ∩ ϕ.

Proposition 88 There is a bijection between flows with finite strength
from o and M(Υ(o)), the set of finite measures on Υ(o), as well as between
nonnegative unit flows and M1(Υ(o)), the set of probability measures
on Υ(o).

Proof. We only show here the second part, as the first one is a trivial
generalization of it. For f a nonnegative unit flow from o and ν ∈M1(Υ(o))
associate the two with each other if

∀ e ∈ E : f(e) = ν(ϕ : e ∈ ϕ).

Remark that ν is uniquely determined by its values over the cylinder sets
{ϕ : e ∈ ϕ}, as its extension to a probability measure on Υ(o) is unique by
Carathéodory 53. Clearly this association is a bijection which respects all
the conditions like nonnegativity and f(o) = 1 = ν(Υ(o)). �

Proposition 89 Let ν ∈ M1(Υ(o)), then on each Π ∈ Π(o) it induces a
probability measure ν|Π ∈M1(Π).

Proof. For Π ∈ Π(o) define ν|Π ∈M1(Π) by

∀ e ∈ Π : ν|Π(e) = ν(ϕ : e ∈ ϕ), (28)

which is the projection of ν on Π. �

Next we see, that if we have such an induced probability measure µ on Π,
that we can rewrite E(µ) in a different form.

28



Definition 90 Define the percolation ray kernel of P at Π by

KΠ : Υ(o)2 → R+ (ϕ, ψ) 7→
PC(o)(ϕΠ ∪ ψΠ)

PC(o)(ϕΠ)PC(o)(ψΠ)
. (29)

Lemma 91 For ν ∈M1(Υ(o)) and Π ∈ Π(o) we have

E(ν|Π) =

∫
Υ(o)2

KΠ(ϕ, ψ)dν×ν(ϕ, ψ). (30)

Proof. We start by writing

χ(ν|Π)

=
∑
e∈Π

ν|Π(e)
1{e∈C(o)}

PC(o)(e)
by (23)

=
∑
e∈Π

ν(ϕ : e ∈ ϕ)
1{e∈C(o)}

PC(o)(e)
by (28) from proposition 89

=
∑
e∈Π

∫
Υ(o)

1{e∈ϕ}dν(ϕ)
1{e∈C(o)}

PC(o)(e)

=

∫
Υ(o)

∑
e∈Π

1{e∈ϕ}
1{e∈C(o)}

PC(o)(e)
dν(ϕ) by Fubini 52

=

∫
Υ(o)

1{ϕΠ⊆C(o)}

PC(o)(ϕΠ)
dν(ϕ) as |Π ∩ ϕ| = 1,

therefore we have

E(ν|Π)

= Eχ(ν|Π)2

= E

∫
Υ(o)

1{ϕΠ⊆C(o)}

PC(o)(ϕΠ)
dν(ϕ)

∫
Υ(o)

1{ϕΠ⊆C(o)}

PC(o)(ϕΠ)
dν(ϕ)

= E

∫
Υ(o)2

1{ϕΠ∪ψΠ⊆C(o)}

PC(o)(ϕΠ)PC(o)(ψΠ)
dν×ν(ϕ, ψ) by Fubini 52

=

∫
Υ(o)2

PC(o)(ϕΠ ∪ ψΠ)

PC(o)(ϕΠ)PC(o)(ψΠ)
dν×ν(ϕ, ψ) by Fubini 52

�

Definition 92 Let ν ∈ M1(Υ(o)), then we say that ν has an exponential
intersection tail with parameters C ∈ R+, α ∈]0, 1[, or short EITC(α), if

∀ k ∈ N : ν×ν((ϕ, ψ) : |ϕ ∩ ψ| ≥ k) ≤ Cαk. (31)
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Proposition 93 If br(T ) > 1 then for every λ ∈]1, br(T )[ and α ∈] 1
λ
, 1[

there exists ν ∈M1(Υ(o)) and C(λ, α) ∈ R+ such that ν has EITC(λ,α)(α).

Proof. Let f be a λ-flow on T from o. Regard g = f
St(f)

and let ν be

its by proposition 88 associated probability measure on Υ(o). Take β ∈]1, λ[
and define functions w and c by ∀ k ∈ N : w(k) = βkλ−k and c(k) = β−k.
Then we have

∀ e ∈ E : f(e) ≤ λ−le(v) = w(le(v))c(le(v))

and

W (λ, β) =
∑
k∈N

w(k) =
∑
k∈N

(
β

λ

)k
=

λ

λ− β
.

Now we can apply proposition 37 to bound the energy of g

St(f)2
E(g)c = E(f)c ≤ St(f)W (λ, β)

which we use ∀ k ∈ N to show

ν×ν({(ϕ, ψ) : |ϕ ∩ ψ| ≥ k})

= ν×ν(
⋂
e∈Tk

{(ϕ, ψ) : |ϕ ∩ ψ| ≥ k ∧ e ∈ ϕ ∩ ψ})

=
∑
e∈Tk

g2(e) = β−k
∑
e∈Tk

g2(e)βk

≤ β−kE(g)c ≤
W (λ, β)

St(f)
β−k

using proposition 37 to conclude with α = 1
β

and C(λ, α) = W (λ,β)
St(f)

. �
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5 Independent percolation on trees

Following T = (V,E) is a leafless, locally finite tree with br(T ) <∞.

Definition 94 Take independent Bernoulli(p) random variables {Xe}e∈E,
then we call this independent bond percolation with parameter p on
T and abbreviate it by Pp(E). Similarly we denote by Pp(V ) an independent
site percolation with parameter p on T .

Proposition 95 (Independent percolation bond-site equivalence)
Let p ∈ [0, 1], then we have

Pp(E) percolates ⇔ Pp(V ) percolates.

Proof. Root T at o ∈ V . Now use the canonical vertex-edge bijection 17
to switch between bond and site percolation on the rooted tree and theorem
78 to switch between the rooted and unrooted versions of T . �

So from now on all results will be stated in terms of bond percolation, al-
though they can be easily transferred to site percolation via proposition 95.
Following Kolmogorov’s 0− 1 law for 0-independent percolation 70 we know
that P (Pp(E) percolates) ∈ {0, 1} and it’s also evident that this probability
is rising in p as independent percolation is a monotone property of graphs.
To show this in detail, create for p < p′ two independent bond percolations
Pp(E) {Xe}e∈E and Pp′(E) {X ′e}e∈E, where for each edge the Bernoulli ran-
dom variables have been coupled as detailled in section 3.2. Thus we have
{Pp′(E) percolates} ⊆ {Pp(E) percolates}. As P (P0(E) percolates) = 0 and
P (P1(E) percolates) = 1 we are interested in the following:

Definition 96 Let T be an infinite, locally finite, leafless tree. Take inde-
pendent bond percolation. Define the critical probability as

pc(T ) = sup{p ∈ [0, 1] : Pp(E) doesn’t percolate}. (32)

Notice that we have p0
min(T ) = pc(T ) = p0

max(T ) by the above coupling
argument. This sudden shift in behaviour at pc(T ) is also called a phase
transition. Similar behaviour on finite random graphs can be observed for
example on the G(n, p) model by Erdös and Rènyi introduced in 1960 in [4],
for a summary of some results see [13].

Corollary 97 In the case of independent percolation statement (19a) from
theorem 78 can be changed to

(∀ v ∈ V : ξv > 0)⇔P (P percolates on T ) = 1 (33)
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Proof. Remember that we have rooted T at o fixed, but arbitrarily
chosen beforehand. We now know that ∃ v ∈ V : ξv > 0 and we show that
this induces ξo > 0. As we can write for all v ∈ V

ξo ≥ P (o↔ v↔∞) = P (o↔ v|v↔∞)ξv = plvξv > 0,

we have proven (33). �

5.1 Determining pc(T )

We now proceed to determine the above quantity. The proof follows the
structure of the proof given in [9], chapter 4, by Lyons and Peres, prunning
everything related to random walks and network theory, as it is not a goal
to detail the connections to these fields (see [9], chapter 2 or [10] for an
introduction to those fields), but to present a self-contained proof within the
scope of this work. First we use the 1st moment method found in proposition
81 to minorize pc(T ):

Proposition 98 (1st moment method) We have

Pp(E) percolates⇒∃ 1

p
-branching flow on T , (34a)

@
1

p
-branching flow on T ⇒Pp(E) doesn’t percolate. (34b)

Proof. Root T at o. As we have a Pp(E) we have P (e ∈ C(o)) = plv(e)

and by the 1st moment method 81 thus

ξo = P (o↔∞) ≤ inf
Π∈Π(o)

∑
e∈Π

(
1

p

)−lv(e)

. (35)

Observe that the right-hand side of (35) is positive iff there is a 1
p
-branching

flow on T (by the secondary definition of br(T ) in (6b)). �

Lemma 99 (pc-Minoration)

pc(T ) ≥ 1

br(T )
.

Proof. Now take p < 1
br(T )

⇔ 1
p
> br(T ), therefore no 1

p
-branching flow

exists. Proposition 98 now asserts that for all choices of a root o we have
ξo = 0 and therefore Pp(E) doesn’t percolate by (19b). �

The majoration is effected by means of the 2nd moment method and expo-
nential intersection tails, deviating from the proof found in [9] and using the
methods in [11], section 10.
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Proposition 100 In the case of Pp(E) and Π ∈ Π(o) the path percolation
kernel from 90 has the form: KΠ(ϕ, ψ) = p−|ϕΠ∩ψΠ|.

Proof.

KΠ(ϕ, ψ) =
PC(o)(ϕΠ ∪ ψΠ)

PC(o)(ϕΠ)PC(o)(ψΠ)
=

p|ϕΠ∪ψΠ|

p|ϕΠ|p|ψΠ|

=
p|ϕΠ∩ψΠ|+|ϕΠ\ψΠ|+|ψΠ\ϕΠ|

p|ϕΠ∩ψΠ|+|ϕΠ\ψΠ|+|ϕΠ∩ψΠ|+|ψΠ\ϕΠ|
= p−|ϕΠ∩ψΠ|

�

Lemma 101

pc(T ) ≤ 1

br(T )
.

Proof. For p ∈] 1
br(T )

, 1] take λ ∈]1
p
, br(T )[. Call ν ∈ M1(Υ(o)) the

probability measure guaranteed by proposition 93 to have EITC(λ,α)(α) where
α ∈] 1

λ
, p[. Now for Π ∈ Π(o) let ν|Π ∈M1(Π) be the projection of ν on Π by

proposition 89, hence we have

E(ν|Π) =

∫
Υ(o)2

KΠ(ϕ, ψ)dν×ν(ϕ, ψ) by lemma 91

=

∫
Υ(o)2

p−|ϕΠ∩ψΠ|dν×ν(ϕ, ψ) by proposition 100

≤
∫

Υ(o)2
p−|ϕ∩ψ|dν×ν(ϕ, ψ)

=
∞∑
k=0

∫
Υ(o)2

p−k1{|ϕ∩ψ|=k}dν×ν(ϕ, ψ) by Fubini 52

=
∞∑
k=0

p−kν×ν({(ϕ, ψ) : |ϕ ∩ ψ| = k})

≤
∞∑
k=0

p−kC(λ, α)αk by EITC(λ,α)(α)

= C(λ, α)
∞∑
k=0

(
α

p

)
= C(λ, α)

α

p− α
,

thus by the second moment method from lemma 86:

ξo ≥ inf
Π∈Π(o)

sup
µ∈M1(Π)

1

E(µ)
≥ inf

Π∈Π(o)

1

E(ν|Π)
≥ p− α
αC(λ, α)

> 0.

33



Apply theorem 78 to conclude that Pp(E) percolates. �

And finally we put it all together:

Theorem 102 (Critical value of p) Let T be an infinite, locally finite,
leafless tree with br(T ) <∞. Then

pc(T ) =
1

br(T )
. (36)

Proof. Combine lemmata 101 and 99. �

5.2 Behaviour at pc(T )

We call independent percolation on T at the critical value 1
br(T )

critical
percolation. It is not possible to determine its behaviour just in terms of
the existence of an br(T )-branching flow, but nevertheless some statements
are possible. For exact determination by means of other methods see the
comments before lemma 104.

Corollary 103 We have

P 1
br(T )

(E) percolates⇒∃ br(T )-branching flow on T , (37a)

@ br(T )-branching flow on T ⇒P 1
br(T )

(E) doesn’t percolate. (37b)

Proof. This is a simple corollary of the 1st moment method from 98. �

This leaves open the question under which conditions a 1
br(T )

-flow results in

P 1
br(T )

(E) percolating. The following lemma, taken from [9], chapter 4.4, pp

111–112, shows how in the case of independent percolation one can reverse
the 2nd moment inequality by a constant factor, which will allow further
analysis of the problem. Together with network theory (see [9], chapter 2 for
a treatment of this topic) this would allow the complete specification. As this
would go beyond the scope of this work we have to fall back on additional
properties of T .

Lemma 104 (2nd moment method reversed)

ξo = P (o↔∞) ≤ 2 inf
Π∈Π(o)

sup
µ∈M1(Π)

1

E(µ)
. (38)
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Proof. Take any cutset Π ∈ Π(o) and impose a linear ordering ≺ on Π.
It always exists, as Π is finite: take for example the ordering from left to
right (remember that T is oriented downwards so Π is cutting horizontally).
Define the random variable

e? : Ω→ Π ∪ {∆} ω 7→

{
e min {e ∈ Π : o↔ e} if {o↔Π}
∆ {o 6↔Π}.

We now define the (possible defective when e? = ∆) hitting measure

σ(e) = P (e? = e)

and as P (o↔Π) ≥ P (o↔ e) = plv(e) > 0 we can define

µ =
σ

P (o↔Π)
∈M1(Π).

Now we have for all e ∈ E∑
f�e

σ(f)
P (o↔ f, o↔ e)

P (o↔ f)

=
∑
f�e

P (e? = f)P (o↔ e|o↔ f)

=
∑
f�e

P (e? = f)P (o↔ e|e? = f)

=
∑
f∈Π

P (e? = f)P (o↔ e|e? = f) e ≺ f⇒P (o↔ e|e? = f) = 0

= P (o↔ e)

thus we have

E(µ)

=
∑
e,f∈E

µ(e)µ(f)κΠ(e, f)

≤
∑
e∈E

2µ(e)
∑
f�e

µ(f)κΠ(e, f) by symmetry

=
∑
e∈E

2µ(e)

P (o↔Π)P (o↔ e)

∑
f�e

σ(f)
P (o↔ f, o↔ e)

P (o↔ f)

=
∑
e∈E

2µ(e)P (o↔ e)

P (o↔Π)P (o↔ e)
previous calculation

=
2

P (o↔Π)

∑
e∈E

µ(e) =
2

P (o↔Π)
.
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Reversing this yields

P (o↔Π) ≤ 2

E(µ)
≤ 2 sup

µ∈M1(Π)

1

E(µ)

and finally, using (18b), we arrive at

P (o↔∞) = inf
Π∈Π(o)

ξΠ
o ≤ 2 inf

Π∈Π(o)
sup

µ∈M1(Π)

1

E(µ)
.

�

Proposition 105 (Measure-Flow Bijection) We have ∀ o ∈ V : ∀Π ∈
Π(o) : ∀µ ∈ M1(Π): There exists a unique nonnegative unit flow f with
strength 1 on T |Π for which the following equation holds:

E(µ) = 1 + E(f)c, (39)

where E(f)c is calculated with respect to the function c(e) = p
lv(e)

1−p .

Proof. It follows from proposition 33 that every flow on T |Π is determined
by its values on ∂T |Π = v(Π) which is isomorph to Π, thus the bijection
between measures and nonnegative flows of strength 1. Finally the relation
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(39) between the energies is shown by

E(µ)

=
∑

v,w∈v(Π)

µ(e(v))µ(e(w))

P (o↔ v ∧ w)

=
∑

v,w∈v(Π)

µ(e(v))µ(e(w))

plv∧w
by independence of the percolation

=
∑

v,w∈v(Π)

µ(e(v))µ(e(w))(1 + p−lv∧w − 1)

=
∑
e,f∈Π

µ(e)µ(f) +
∑

v,w∈v(Π)

µ(e(v))µ(e(w))(p−lv∧w − 1)

= 1 +
∑

v,w∈v(Π)

f(v)f(w)(p−lv∧w − 1)

= 1 +
∑

v,w∈v(Π)

f(v)f(w)
∑

e∈E|Π: v(e)≤v∧w

(1− p)p−lv(e)

= 1 +
∑
e∈E|Π

(1− p)p−lv(e)

∑
v,w∈v(Π): v(e)≤v∧w

f(v)f(w)

= 1 +
∑
e∈E|Π

(1− p)p−lv(e)

∑
v∈v(Π): v(e)≤v

f(v)
∑

w∈v(Π): v(e)≤w

f(w)

= 1 +
∑
e∈E|Π

(1− p)p−lv(e)f(v(e))2 by proposition 33

= 1 + E(f)c

�

Lemma 106 If gr(T ) = br(T ) and br(T ) > 1 then P 1
br(T )

(E) doesn’t perco-

late.

Proof. Root T at o. First we see that, as gr(T ) = br(T ), we can
apply corollary 50 to get C ∈ R+ : ∀n ∈ N : |T n| ≤ C(br(T ))n. Next we

minorate E(f)c for any nonnegative unit flow f on T |n and c(e) = p
lv(e)

1−p from
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proposition 105:

E(f)c

=
∑
e∈E|n

(1− p)p−lv(e)f(e)2

≥
n∑
k=1

(∑
e∈Tk

pk

1− p

)−1

by Nash-Williams 38

≥ (1− p)
n∑
k=1

1

C(br(T ))kpk

= (1− 1

br(T )
)

n∑
k=1

1

C
as p =

1

br(T )
< 1

=
n(1− 1

br(T )
)

C
.

Next we majorate

ξo

≤ 2 inf
Π∈Π(o)

sup
µ∈M1(Π)

1

E(µ)
by reversal 2nd moment method 104

= 2 inf
Π∈Π(o)

sup
f on T |Π

1

1 + E(f)c
by proposition 105

≤ 2 inf
n∈N

sup
f on T |n

1

1 + E(f)c
taking only certain cutsets

≤ 2 inf
n∈N

sup
f on T |n

C

1 + n(1− 1
br(T )

)
by the previous calculation

≤ 2 inf
n∈N

C

1 + n(1− 1
br(T )

)
independent of f

= 0

As the choice of o was independent of P 1
br(T )

(E) we see by (19b) that P 1
br(T )

(E)

doesn’t percolate. �

Corollary 107 If T is (sup-/super-) periodic and br(T ) > 1 then P 1
br(T )

(E)

doesn’t percolate.

Proof. By theorems 48 and 49 any (sup-/super-) peridioc tree T has
gr(T ) = br(T ), hence we can apply lemma 106. �
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5.3 Branching number of the giant component

Independent percolation Pp(E) on T has the effect of splitting up T into
a forest Fp(ω) = (V,Ep(ω)) of smaller trees. We are now interested in the
structure and especially the branching number of the infinite trees in Fp(ω)
in the case of P 1

br(T )
(E) percolating.

Lemma 108 Take p, p′ ∈]0, 1[. Regard the percolations {Y p
e }e∈E, which is a

Pp(E), and {Y pp′
e }e∈E, which is a Ppp′(E). Furthermore have a percolation

Pp′(Ep(ω)) {Y p′
e (ω)}e∈Ep(ω) conditionally defined on Fp(ω). Then the laws

of {Y p′
e (ω)}e∈Ep(ω) and {Y pp′

e }e∈E conditioned on Fp(ω) are almost surely the
same.

Proof. We can assume that {Y p
e }e∈E and {Y pp′

e }e∈E are coupled as de-
scribed in proposition 56. For e ∈ E and ω : e ∈ Fp(ω) we have

P (Y p′

e (ω) = 1|e ∈ Fp(ω)) = p′ =
pp′

p
=

P (Y pp′
e = 1)

P (Y p
e = 1)

=
P (Y pp′

e = 1, Y p
e = 1)

P (Y p
e = 1)

= P (Y pp′

e = 1|Y p
e = 1). (40)

Note that {ω : e ∈ Fp(ω)} = {ω : Y p
e = 1}. The calculation in (40) can easily

be adapted to the case Y p′
e = 0 and extended to a finite number of edges.

Therefore the conditional laws coincide on the product σ-algebra over E
almost surely and also over the tail σ-algebra on E almost surely (see also
figure 3 on 39). �

T = (V,E)
Pp(E) //

Ppp′ (E) &&MMMMMMMMMM
Fp(ω)

Pp′ (Ep(ω))zzuuuuuuuuu

Fpp′(ω)

Figure 3: Communativity of iterated independent percolation with parameters p
and p′ with independent percolation with parameter pp′ on T .

Theorem 109 Take p such that Pp(E) percolates. Then there exists an
infinite tree T ′(ω) in Fp(ω) such that

pc(T
′(ω)) =

pc(T )

p
almost surely. (41)
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Proof. Take the biggest (with respect to its branching number) infinite
tree T ′(ω) in Fp(ω), which exists almost surely as Pp(E) percolates. Define
a percolation Pp′(Ep(ω)) {Y p′

e (ω)}e∈Ep(ω) conditionally on Fp(ω). As we in-
vestigate the percolation behaviour of this second percolation, we see that,
conditional on T ′(ω), by lemma 108, this has the same law as a Ppp′(E), which

will percolate if pp′ > 1
br(T )

and not if pp′ < 1
br(T )

, hence pc(T
′(ω)) = pc(T )

p

almost surely. �

Corollary 110 Take p such that Pp(E) percolates. Then there exists an
infinite tree T ′(ω) in Fp(ω) such that

br(T ′(ω)) = p br(T ) almost surely. (42)

Proof. Use theorem 109 in conjunction with theorem 102. �
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6 1-independent percolation on trees

This section has been worked out after the notes [2] taken by Pierre Math-
ieu of a presentation given by Bollobas on the topic. Another use of 1-
independent percolation, this time on Z2, has taken place by Bollobas and
Riordan in [3] to prove results about independent percolation on Z2.
In the following p ∈]0, 1[ and q = 1− p. T = (V,E) is as usually an infinite,
locally finite, leafless tree with br(T ) <∞. If necessary let T be rooted at o.
We will use the notation established in definitions 73 and 74. For any w ∈ V
we will denote the ranks of the respective nodes by

r = rw

ri = rwi
for the children {wi}ri=1 of w

ri,j = rwi,j
∀ i ∈ {1, . . . , r}: for the children {wi,j}rij=1 of wi.

6.1 Analytical foreplay

We start by looking at two functions and a sequence they generate.

Proposition 111 Regard

fp : ]0, 1]→ R x 7→ 1− q

x
(43)

then for p ∈ [3
4
, 1] the function fp has an unique positive fixed point

c(p) =
1 +
√

1− 4q

2
(44)

lying in [1
2
, 1]. This can be reversed bijectively to yield (see (48))

p(c) = g

(
1

c

)
= c2 − c+ 1. (45)

Proof. First we start with some properties of fp

fp
′(x) =

q

x2
> 0 fp

′′(x) = −2q

x3
< 0

lim
x→0

fp(x) = −∞ lim
x→1

fp(x) = p
(46)

Next we resolve the fixed point equation

c = fp(c) = 1− q

c
⇔ c2 − c+ q = 0 (47)
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to arrive at (44) and (45). We deduce the bijection from the positive first
derivatives of the following two expressions

c(p)′ =
2√

4p− 3
> 0 iff p >

3

4
and p(c)′ = 2c− 1 > 0 iff c >

1

2
.

�

Proposition 112 The function

g : [1,∞[→]0, 1[ y 7→ 1− y − 1

y2
(48)

has its global minimum at 2 with value 3
4

and there is a bijection between
g(]1, 2[) and g(]2,∞[). Furthermore g is strictly decreasing in [1, 2] and
strictly increasing in [2,∞].

Proof. We take note of the following facts concerning g

g′(y) =
y − 2

y3
g′′(y) =

6− 2y

y4

lim
y→1

g(y) = 1 lim
y→∞

g(y) = 1
(49)

from which we can easily deduce the statements about g. �

Proposition 113 For any x ∈ [1, 2[ and p, p′ ∈ [3
4
, 1] we have

p′ < g(y) < p⇔ c(p′) <
1

y
< c(p) (50)

Proof.

p > g(y) > p′ ≥ 3

4
by proposition 112

⇔ g

(
1

c(p)

)
> g(y) > g

(
1

c(p′)

)
≥ 3

4
by (47)

⇔ 1

c(p)
< y <

1

c(p′)
by proposition 112

⇔ c(p) >
1

y
> c(p′)

�
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Proposition 114 For p ∈ [0, 1] define the sequence {xk}k∈N by

xk =


1 k = 0

fp(xk−1) k ≥ 1 ∧ xk−1 > q

0 otherwise,

(51)

where fp defined as in (43). It is monotonically decreasing and for p ≥ 3
4

strictly decreasing towards c(p).

Proof. If p ≥ 3
4

the monotonicity of fp implies the monotonicity of xk:

x > c(p)

⇔ x[c(p)− 1] > c(p)[1− c(p)] = q by (45)

⇔ f(x) = 1− q

x
> c(p) by (46).

�

6.2 The canonical model

In this section we present the canonical 1-independent bond percolation with
parameter p. The importance it plays will become appearent in section 6.3,
where it is shown that it is in a certain sense the best 1-independent bond
percolation with parameter p existing on a given rooted tree T .

Model 115 Finite case: Let p ∈ [0, 1]. Take a finite tree T rooted at o with
N full levels. Define a sequence {ck}Nk=1 by ck = xN−k, where {xk}k∈N as in
114. Take independent Bernoulli site percolation {Xv}v∈V on T with param-
eter ck on Tk. Define the canonical 1-independent bond percolation
{Ye}e∈E as follows:

{Ye = Ye(v) = 0} = {Xv = 1 ∧Xp(v) = 0} (52)

Infinite case: Let p ∈ [3
4
, 1] and root T at o. Take a Pc(p)(V ) percolation

{Xv}v∈V . Define the canonical 1-independent bond percolation with parame-
ter p on T , abbreviated as P1,can

p (E), {Ye}e∈E as in (52).

Definition 116 In the case of canonical 1-independent bond percolation we
call the underlying path of a downpath from a node w to a node v the set of
nodes which are endpoints of edges on the downpath. Likewise the definition
is extended to underlying ray in the obvious sense. This allows to play the
P1,can
p (E) back onto its underlying Pc(p)(V ) and analogous in the finite case.
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Proposition 117 We want to classify the structure of the underlying
paths/rays in the canonical 1-independent bond percolation. In the finite
case the underlying path consists of only 1’s. In the infinite case there are
three possibilites for the underlying ray:

0− 0− 0− 0− 0− 0− 0− 0− . . . ⇒ infinite 0-ray (53a)

1− 1− . . . . . .− 1− 1︸ ︷︷ ︸
finitely many

−0− 0− . . . ⇒ infinite 0-ray (53b)

1− 1− 1− 1− 1− 1− 1− 1− . . . ⇒ infinite 1-ray. (53c)

Proof. By the definition of the canonical 1-independent bond percolation
in 52 an open edge implies that in its underlying 2 endnodes the case 0− 1
can’t appear. In the case of finite N the path could contain only 1’s, because
if it would contain a 0, it could only be followed by other 0’s and would
encounter latest at level N a 1, thereby closing at least one edge along the
path. In the infinite case it is possible, that once switched from 1’s to 0’s to
stay with them, hence the three above possibilities. �

Notation 118 Following the notation established in definition 73 we write
for the P1,can

p (E)

Om,can(N)
w downpath to level m from w in the N-finite case

Om,can(∞)
w downpath to level m from w in the infinite case

Ocan(∞)
w downray from w for P1,can

p (E)

Ocan(∞,1)
w downray from w based on a 1-ray in the underlying Pc(p)(V )

This adaption of notation is also carried over to the events and probabilites
defined in 74.

Lemma 119 (Canonical convergence) Let p ∈ [3
4
, 1] and T be rooted at

o. For w ∈ V we have

ON,can(N)
w

P−−−→
N→∞

Ocan(∞,1)
w (54)

Proof. We start by creating a sequence of percolations which are coupled
to each other. First assign an independent family of Unif([0, 1])-distributed
random variables to the vertices of T : {Uv}v∈V i.i.d. Unif([0, 1]). For
N ∈ N we create now a finite canonical 1-independent bond percolation
P

1,can(N)
p (E(T |N)) by coupling the underlying independent site percolation

on V (T |N) on {Uv}v∈V and setting all other vertices to 1. Finally we cre-
ate an infinite canonical 1-independent bond percolation P1,can

p (E) where the
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underlying Pc(p)(V ) is again coupled to the {Uv}v∈V .

We simplify our reasoning considerably by extending each of the finite
percolations P

1,can(N)
p (E(T |N)) by 1’s to the rest of T , thereby assuring that

all percolations live on E. Next we note the simple fact that

∀N ∈ N,∀m ≥ N : Om,can(N)
w = ON,can(N)

w (55)

as a path down to level N is going to ∞ in the extension by 1’s to T (see
proposition 117). Using this fact and proposition 75 we arrive at

∀N ∈ N : ON,can(N)
w = Ocan(N)

w . (56)

We also see that for finite N , the paths going through the percolation
above level N can only have underlying paths of 1’s, as any path containing
a 0 could only go on with further 0’s and would latest terminate at level N ,
where we have deterministically only 1’s (see (52)). Next we remark that the

sequence of events {Ocan(N)
w }N∈N is monotone decreasing, as

Ocan(N+1)
w = ON+1,can(N+1)

w ⊂ ON,can(N+1)
w ⊂ ON,can(N)

w = Ocan(N)
w . (57)

The parameters of the underlying Bernoulli variables on V (T |m) are cou-
pled in a strictly monotone order by the definition of the sequence ck (see
proposition 114), which implies a coupling of the underlying paths of 1’s and
leads leads to the following chain:

Om,can(∞,1)
w ⊂ . . . ⊂ Om,can(N+1)

w ⊂ Om,can(N)
w ⊂ . . . .

Now for finite m we have only finitely many coupled variables on V (T |m) and
convergence of the sequence ck (see proposition 114) gives us convergence in
probability and we arrive at the core argument of this proof:

∀m ≥ lw : Om,can(N)
w

P−−−→
N→∞

Om,can(∞,1)
w . (58)
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Now putting it all together we have:
∞⋂
N=1

Om,can(N)
w = Om,can(∞,1)

w using (58)

∞⋂
m=1

∞⋂
N≥m

Om,can(N)
w =

∞⋂
k=m

Om,can(∞,1)
w

∞⋂
N=1

N⋂
m=1

Om,can(N)
w = Ocan(∞,1)

w using proposition 75

∞⋂
N=1

∞⋂
m=1

Om,can(N)
w = Ocan(∞,1)

w using (56)

∞⋂
N=1

Ocan(N)
w = Ocan(∞,1)

w again using proposition 75

and using the fact that {Ocan(N)
w }N∈N is a decreasing sequence (see (57)) we

arrive at (54). �

Proposition 120 Let p ∈]3
4
, 1] and T be rooted at o. If br(T ) < 2 then

∀w ∈ V : Ocan(∞,1)
w = Ocan(∞)

w almost surely. (59)

Proof. Take P1,can
p (E) and suppose that it percolates, hence there is a

node w with finite level such that there is a downpath from w to ∞. Using
the structure of the underlying ray as established in proposition 117 we get
for the underlying Pc(p)(V )

(53a) or (53b)⇒ infinite 0-cluster (60a)

(53c)⇒ infinite 1-cluster. (60b)

But an infinite 0-cluster as in (60a) would imply a cluster of 1’s in P1−c(p)(V ),
which by theorem 102 only percolates iff 1

br(T )
< 1− c(p). But by proposition

113 we get 1
2
< c(p) < 1

br(T )
, hence we have 1

br(T )
< 1

2
< 1 − c(p) and don’t

percolate. Thus the only chance is to have an underlying 1-ray for a downray
from w for P1,can

p (E). �

6.3 Lower bounds by the canonical model

Proposition 121 Let T be rooted at o and let w ∈ V , with neither w nor
one of its children being leaves. Then the following partition holds

Fw = H ]
r⊎
i=1

(
Fw ∩Hc ∩

r⋂
k=i+1

Gc
k ∩Gi

)
(61)
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where Gi =
⋂i−1
k=1 Fwk

∩Owi
and H =

⋂r
i=1 Fwi

.

Proof. The key point is the fact that we divide the probability space by
the lowest index of a child of w having an open downray.

Fw

= (Fw ∩H) ] (Fw ∩Hc)

= H ] (Fw ∩Hc ∩Gr) ] (Fw ∩Hc ∩Gc
r) as H ⊂ Fw

= H ]
r⊎
i=1

(
Fw ∩Hc ∩

r⋂
j=i+1

Gc
j ∩Gi

)
by induction over i

= H ]
r⊎
i=1

(
Fw ∩Hc ∩

r⋂
k=i+1

Gc
k ∩Gi

)
�

Lemma 122 (η-majoration) Let T be rooted at o and let w ∈ V , with
neither w nor one of its children being leaves. For any P1

p(E) the following
inequality holds

ηw ≤ q
r∑
i=1

[(
1−

ri∏
j=1

ηwi,j

) i−1∏
k=1

ηwk

]
+

r∏
i=1

ηwi
(62)

Proof. With the notation from proposition 121 we have

Fw ∩Owi
⊆ Ewi

∩Owi

and
ri⋂
j=1

Fwi,j
⊂ Fwi

as well as

Fw ∩Gi

⊆ Fw ∩
i−1⋂
k=1

Fwk
∩Owi

⊆
i−1⋂
k=1

Fwk
∩ (Fw ∩Owi

)

⊆
i−1⋂
k=1

Fwk
∩ (Ewi

∩Owi
)

⊆
i−1⋂
k=1

Fwk
∩ Ewi

∩
( ri⋂
j=1

Fwi,j

)c
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Now using the above equations and (61) we get

Fw

= H ]
r⊎
i=1

(
Fw ∩Hc ∩

r⋂
k=i+1

Gc
k ∩Gi

)

⊆ H ]
r⊎
i=1

(Fw ∩Gi)

⊆ H ]
r⊎
i=1

[
i−1⋂
k=1

Fwk
∩ Ewi

∩
( ri⋂
j=1

Fwi,j

)c]

which leads to

P (Fw)

≤ P (H) +
r∑
i=1

P

(
i−1⋂
k=1

Fwk
∩ Ewi

∩
( ri⋂
j=1

Fwi,j

)c)

=
r∏
i=1

P (Fwi
) +

r∑
i=1

[
i−1∏
k=1

P (Fwk
)P (Ewi

)

(
1−

ri∏
j=1

P (Fwi,j
)

)]
see figure 4

=
r∏
i=1

ηwi
+

r∑
i=1

[
i−1∏
k=1

ηwk
q

(
1−

ri∏
j=1

ηwi,j

)]
.

�

w

Fw1

hhhhhhhhhhhhhhhhhhhhhhhh
Fw2

vvvvvvvvv
w3

Ew3

IIIIIIIIII
w4

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Fw31

wwwwwwwww
Fw32 Fw33

GGGGGGGGG

Figure 4: In this example for r = 4, i = 3 and r3 = 3 we see that the six events
Fw1 , Fw2 , Ew3 , Fw31 , Fw32 and Fw33 have pairwise distance > 1 and are therefore
independent of each other.
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Lemma 123 (ξ-minoration) Let T be a finite tree with N full levels rooted
at o. For any P1

p(E) we have

∀ k ∈ {1 . . . , N − 1},∀w ∈ Tk : ξNw ≥ ck

(
1−

r∏
i=1

ηNwi

)
(63)

where the {ck}Nk=1 are as in the finite case of model 115.

Proof. We prove this by reverse induction on k.
k = N − 1: Let w ∈ TN−1, then

ηNw = P (FN
w ) ≤ P (Ew1) = q = 1− p = 1− cN−1

k + 1→ k: Let w ∈ Tk, then

ck+1η
N
w

≤ ck+1q
r∑

k=1

[(
1−

rk∏
j=1

ηNwk,j

) k−1∏
i=1

ηNwi

]
+ ck+1

r∏
i=1

ηNwi
by lemma 122

≤ q
r∑

k=1

[(
1− ηNwi

) k−1∏
i=1

ηNwi

]
+ ck+1

r∏
i=1

ηNwi
induction step

≤ q

(
1−

r∏
i=1

ηNwi

)
+ ck+1

r∏
i=1

ηNwi

which leads to

ξNw

= 1− ηNw

≥ 1− q

ck+1

(
1−

r∏
i=1

ηNwi

)
+

r∏
i=1

ηNwi

=
(
1− (1− ck)

)(
1−

r∏
i=1

ηNwi

)
by ck = f(ck+1)

= ck

(
1−

r∏
i=1

ηNwi

)
�
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Lemma 124 (ξ-equality) Same setting as in lemma 123, but instead of any
percolation take finite canonical 1-independent percolation with parameter p.
Then we have the equality

∀ k ∈ {1 . . . , N − 1}, ∀w ∈ Tk : ξN,can(N)
w = ck

(
1−

ri∏
i=1

ηN,can(N)
wi

)
. (64)

Proof. Again by reverse induction:
k = N − 1: Let w ∈ TN−1, then

ξNw = P (ON
w ) = P (Xw = 1) = p = cN−1

k + 1→ k: Let w ∈ Tk, then

ξNw = P

(
{Xw = 1} ∩

( r⋂
i=1

FN
wi

)c)
= ck

(
1−

r∏
i=1

ηN,can(N)
wi

)
by using the structure of the underlying path as detailled in proposition 117
which requires all 1’s. �

Corollary 125 (ξ-comparison) With the same setting as in lemma 123 we
have for any 1-independent percolation

∀ k ∈ {1 . . . , N − 1},∀w ∈ Tk : ξNw ≥ ξN,can(N)
w . (65)

Proof. Again by reverse induction:
k = N − 1: Let w ∈ TN−1, then using lemmata 123 and 124 we obtain:

ξNw ≥ cN−1

(
1−

r∏
i=1

ηNwi

)
= p

(
1−

r∏
i=1

0

)
= p = P (ON,can(N)

w ) = ξN,can(N)
w

k + 1→ k: Let w ∈ Tk, then

ξNw

≥ ck

(
1−

r∏
i=1

ηNwi

)
by lemma 123

≥ ck

(
1−

r∏
i=1

ηN,can(N)
wi

)
induction step

= ξN,can(N)
w by lemma 124

�

We are finally at the point where this section can be summed up into
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Theorem 126 (ξ-comparison) Now again on an infinite tree T rooted at
o, we have for any P1

p(E):

∀w ∈ V : ξw ≥ ξcan(∞)
w . (66)

Proof. Use corollary 125 together with the convergence result for canonical
percolation from lemma 119 and the convergence result for general percola-
tion from proposition 75 to extend the statement to the infinite tree. �

As a last note I want to point out another view of the fact that the canonical
percolation is the best imaginable:

Proposition 127 Let T be rooted at o and w ∈ V \{o}, wi one of w’s chil-
dren and p ∈ [3

4
, 1]. Then for any P1

p(E) we have

P (Xe(wi) = 1|Xe(w) = 1) ≥ 1− 2q

p

In the case of P1,can
p (E) the above becomes an equality.

Proof. For any P1
p(E)

P (Xe(wi) = Xe(w) = 1) = 1−P (Xe(wi) = 0 ∨Xe(w) = 0)

≥ 1− [P (Xe(wi) = 0) + P (Xe(w) = 0)] = 1− 2q

and for P1,can
p (E) we have for the triple (Yw, Ywi

, Ywi,j
) in the underlying

Pc(p)(V ) only the choice between (1, 1, y), (1, 0, 0) or (0, 0, 0), hence yielding
the equality. �

6.4 p1
max(T ) for br(T ) < 2

Lemma 128 If br(T ) < 2 and p > g(br(T )) then any P1
p(E) percolation

percolates almost surely.

Proof. As br(T ) < 2 we have 3
4
< g(br(T )) < p and by proposition 113

we get c(p) > 1
br(T )

. From here on there are 2 ways to finish the proof, both

by showing that on a rooted version of T P1,can
p (E) has downrays from the

root o with positive probability. The final step common to both versions
is then the application of theorem 126 to establish percolation for all other
Pp(E) ∈ C1

p(E) on said rooted version of T and finally show almost sure
percolation on the unrooted version of T using theorem 78.
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Bollobas & Ballister: Root T at o. For λ ∈] 1
c(p)

, br(T )[ take a λ-flow f

from o on T . Set ε = c(p)− 1
λ
∈]0, 1[ for an appropriate choice of λ. We now

claim that for any P1
p(E) we have

∀w ∈ V : ξw ≥ ελlvf(w).

We are first showing this fact for T |N , where N ∈ N and then again lifting
it to the infinite tree via lemma 119, thus we start with showing that

∀N ∈ N : ∀w ∈ V (T |N) : ξNw ≥ ελlwf(w).

This we prove by reverse induction:
k = N : ∀w ∈ T |NN : ξNw = 1 ≥ ελNf(w)
k + 1→ k: Let w ∈ T |kN , then

ξNv

= 1− ηNv

≥ ck

(
1−

r∏
i=1

ηNvi

)
by lemma 123

≥ c(p)

(
1−

r∏
i=1

ηNvi

)
by 114: ck > c(p)

≥ c(p)

[
1−

r∏
i=1

(
1− ελk+1f(vi)

)]
by induction hypothesis

≥ c(p)

(
1−

r∏
i=1

e−ελ
k+1f(vi)

)
as ∀ y ∈ R+ : e−y ≥ 1− y

= c(p)
(

1− e−ελk+1
Pr

i=1 f(vi)
)

= c(p)
(

1− e−ελk+1f(v)
)

by the definition of flow 27

≥ c(p)
ελk+1f(v)

1 + ελk+1f(v)
as ∀ y ∈ R+ : 1− e−y ≥ y

1 + y

= ελkf(v)
c(p)λ

1 + ελλkf(v)

≥ ελkf(v)
c(p)λ

1 + ελ
fλ-flow ⇒ f(v)λk ≤ 1

= ελkf(v) by definition of ε

We now use theorem 75 to extend this inequality to the infinite tree, thus we
have ∀w ∈ V : ξw ≥ ε upon taking f(v) = λ−lv . Finally apply theorem 78
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to show percolation on the unrooted tree.

Pierre Mathieu: As c(p) > 1
br(T )

we have percolation for Pc(p)(V ) upon
application of theorem 102. Rooting T at o and using theorem 78 we now
find that we have a downray from o with positive probabiliy ξo > 0. This
downray translates itself into a downray for P1,can

p (E), thus we have

0 < ξcan(∞,1)
o ≤ ξcan(∞)

o .

�

Lemma 129 Let T have br(T ) < 2 and p ∈]3
4
, g(br(T ))[. Then P1,can

p (E)
doesn’t percolate.

Proof. By proposition 113 we get c(p) ∈]1
2
, 1
br(T )

[. By proposition 120 we

only have to care about underlying rays of 1’s. These exist only if Pc(p)(V )
percolates, which it doesn’t (use theorem 102 and c(p) < 1

br(T )
). �

Theorem 130 Let T be a locally finite, leafless tree with br(T ) < 2, then

p1
max(T ) = g(br(T )) = 1− br(T )− 1

br(T )2 . (67)

Proof. Combine the results of lemmata 128 and 129. �

Corollary 131 If br(T ) ≥ 2, then 3
4
≤ p1

max(T ).

Proof. Let 3
4
< p. As the branching number is a monotone growing

property of trees we can choose a substree T ′ of T with br(T ′) < 2 such
that g(br(T ′)) < p (works for all 3

4
< p by proposition 112). By theorem

130 we percolate on T ′, hence we percolate on T (as we can fill up T\T ′
with independent Bernoulli random variables and percolation is a monotone
growing property of graphs, too). �

6.5 The impossible model

Model 132 We call the impossible model of 1-independent percola-
tion, P1,imp(E), the following model: starting from the root o, assign marks
to the nodes via the function

m : V → {0, 1, ?} v 7→


0 lv ≡ 2, 3 mod 6

1 lv ≡ 5, 6 mod 6

? lv ≡ 1 mod 3

(68a)
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Now assign independent random variables {Xv}v∈V of the following form to
the nodes

mv = 0⇔Xv∼Bernoulli

(
1√
2

)
mv = 1⇔Xv∼Bernoulli

(
1− 1√

2

)
mv = ?⇔Xv∼Bernoulli

(
1

2

)
and define the variables for P1,imp(E), {Ye}e∈E, by

{Ye = 1} = {Xv(e) = Xp(v(e)) ∧ ¬(Xv(e) = Xp(v(e)) = mv(e) = mp(v(e)))}.
(68b)

For a visualization of this model see figure 5 on page 54. This model not only
works on trees, but can be applied to any graph, therefore the lower bound
on p1

max(T ) it delivers (see proposition 133) is universal. Shorter models can
be found on trees (see notes after proposition 138).

mv ? 0 0 ? 1 1 ?

EXv
1
2

1√
2

1√
2

1
2

√
2−1√

2

√
2−1√

2
1
2

Xv = 0 • • • • • • •
Xv = 1 • • • • • • •

Figure 5: Visualization of the impossible percolation along a ray section

Proposition 133 P1,imp(E) as defined in 132 has parameter 1
2
.

Proof. As the definition in (68b) is symmetric in the two endnodes v, w of
an edge e, we only have to regard the following cases (ordered by (mv,mw)):

P (Ye = 1)

=



P (Xv = Xw = 1) =
(

1√
2

)2

= 1
2

(0, 0)

P (Xv = Xw = 0) =
(

1√
2

)2

= 1
2

(1, 1)

P (Xv = Xw = 0) + P (Xv = Xw = 1) = 1
2

(
1√
2

+ 1− 1√
2

)
= 1

2
(0, ?)

P (Xv = Xw = 0) + P (Xv = Xw = 1) = 1
2

(
1

1− 1√
2

+ 1√
2

)
= 1

2
(1, ?)

�
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Lemma 134 P1,imp(E) as defined in 132 doesn’t percolate.

Proof. Denote by C = (VC , EC) any connected component of P1,imp(E).
It’s plain to see that all {Xv}v∈VC

must realize in the same value. Assume
that this value is 0, hence C can’t contain any of the edges whose endpoints
are both marked with 0. These edges separate T into finite rings around o
and C is contained within one of these rings, therefore C is finite. The same
reasoning applies for the value 1, hence P1,imp(E) doesn’t percolate as all of
its components are deterministically finite. �

6.6 p1
min(T )

Model 135 Take a P√p(V ) {Xv}v∈V and construct from it the minimal
model of 1-independent bond percolation with parameter p, abbre-
viated P1,min

p (E), {Ye}e∈E by

{Ye = Ye(v) open} = {Xv = 1 ∧Xp(v) = 1}. (69)

Theorem 136 We have

p1
min(T ) =

1

br(T )2 . (70)

Proof.

”≤”: Suppose p > 1
br(T )2 . Then the underlying P√p(V ) {Xv}v∈V of P1,min

p (E)

{Ye}e∈E percolates by theorem 102 as
√
p > 1

br(T )
. As {Xv}v∈V percolates, it

has a node w of finite rank from with a ray of 1’s from w →∞ starts. This
translates itself by (69) to a ray of open edges in {Ye}e∈E, hence it percolates,
too (using two times theorem 78).
”≥”: For any P1

p(E) the 1st moment method (see 81) results in

P (o↔∞)

≤ inf
Π∈Π(o)

∑
e∈Π

P (e ∈ C(o))

≤ inf
Π∈Π(o)

∑
e∈Π

(
√
p)lv(e) by (12) in proposition 64

≤ inf
Π∈Π(o)

∑
e∈Π

(
1
√
p

)−lv(e)
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which implies that we have

P1
p(E) percolates

⇔P (o↔∞) > 0 by theorem 78

⇒ inf
Π∈Π(o)

∑
e∈Π

(
1
√
p

)−lv(e)

> 0

⇒ 1
√
p
≤ br(T ) by definition 40

⇔ p ≥ 1

br(T )2 .

�

6.7 Bernoulli models

All the models of 1-independent percolation introduced so far (see models
115, 132 and 135) have had the same structure: Mark the nodes repeatingly
with the same labels from a finite set (may have cardinality 1), then assign
Bernoulli random variables with parameters depending on the marks to them
and finally construct the Bernoulli random variables with parameter p for the
edges from the Bernoulli random variable of their respective endpoints. From
now on I will call these models Bernoulli models, referring to their con-
struction.

Using the enumeration from table 1, we could write model 115 as a repeti-
tion of #14 (only the infinite case), model 132 as a repetition of the sequence
(#6,#5,#6,#6,#2,#6) going out from o and model 135 as #5.

Next we want to classify the behaviour of Bernoulli models and detail
some of the restrictions it imposes. Let e ∈ E with endpoints v, w ∈ V
and assign Bernoulli random variables with parameters pv and pw to v and
w: Xv∼ Bernoulli(pv) and Xw∼ Bernoulli(pw). To construct now a Ye∼
Bernoulli(p) from Xv and Xw we have only a σ-algebra with 4 elements at
our disposition (see table 1 on page 57).

Definition 137 A percolation P on a tree T with root o is called impossible
iff along any ray R ∈ Υ(o) we have a deterministic finite section SR such
that P (SR open) = 0.
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======= 0
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0

======= 0

1 1

0 0

1

�������
1

0 0

1

�������
1

0

======= 0

1

�������
1

0

======= 0

1

�������
1

0 0

1

�������
1

0 0

1

�������
1

0

======= 0

1

�������
1

0

======= 0

1

�������
1

Table 1: These are the 16 events in the σ-algebra, enumerated from event #1
to event #16 in reading order, of a Bernoulli random variable generated from two
independent Bernoulli random variables
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0 0 0

1 1 1

0 0 0 0

1 1 1 1

0 0 0 0 0

1 1 1 1 1

0 0 0

1

������
1 1

0 0 0 0

1

������
1 1 1

0 0 0 0 0

1

������
1 1 1 1

0 0 0

1

������
1

������
1

0 0 0 0

1

������
1 1

������
1

0 0 0 0 0

1

������
1 1 1

������
1

Table 2: In each line, we have one of the three possible cases modulo symmetries,
to have a cut, with examples of Ω1

SR
and Ω2

SR
running parallel for 0, 1 or 2 edges

from left-to-right.

Proposition 138 Any impossible P1
p(E) ∈ C1

p(E) based on Bernoulli models
has parameter p ≤ 1

2
.

Proof. Root T at o and regard R ∈ Υ(o). We need a finite section SR of
R such that P (SR open) = 0. From the construction of Bernoulli models it
follows that SR has to contain at least two disconnected sets Ω1

SR
and Ω2

SR
of

events in the underlying σ-algebra. The cut between these has the following
structure: the set Ω1

SR
arrives from the left, then Ω2

SR
is starting, they may

run for some time in parallel and then Ω1
SR

ends and only Ω2
SR

rests (see
table 2 on page 58 for examples). We demonstrate that for all possible cuts
the restrictions force us to choose p ≤ 1

2
. The parameters for the Bernoulli

random variables on the nodes will be denoted by c0, c1, c2, . . ., starting from
the left, and the parameter of the bond variables will be p.

Cases with parallel run of length 0: left column in table 2
Upper case: p = (1− c0)(1− c1) ∧ p = c1c2⇒ p ≤ 1− c1 ∧ p ≤ c1⇒ p ≤ 1

2
.

Middle case: p = 1− c1 ∧ p = c1c2⇒ p = 1− c1 ∧ p ≤ c1⇒ p = c1 = 1
2
.

Lower case: p = 1− c1 ∧ p = c1⇒ p = c1 = 1
2
.

Cases with parallel run of length 1: center column in table 2
Upper case: p = (1− c0)(1− c1) ∧ p = (1− c1)(1− c2) + c1c2 ∧ p = c2c3.
It follows that c1 = 1−c0−p

1−c0 , c2 = pc0
2p+c0−1

and c3 = 2p+c0−1
c0

which results in

58



1 ≥ c3 = 2p+c0−1
c0

⇒ p ≤ 1
2
.

Middle case: p = 1− c1 ∧ p = (1− c1)(1− c2) + c1c2 ∧ p = c2c3.
Hence p = p(1− c2) + (1− p)c2⇒ p = 1

2
.

Lower case: p = 1− c1 ∧ p = (1− c1)(1− c2) + c1c2 ∧ p = c2.
Therefore we have p = p(1− p) + (1− p)p⇒ p = 1

2
.

Cases with parallel run of length 2 or longer: Examples with a
parallel run of length 2 can be seen in the right column of table 2. Note
that in the case of longer parallel runs we have c1 = c3 = c5 = . . . and
c2 = c4 = c6 = . . . by symmetry in the equations for events #6 and #11.
Hence treatment of all those cases is already included in the treatment of the
length 0 and 1 cases. �

Corollary 139 Any percolation based on a Bernoulli model with parameter
p > 1

2
on any tree has downpaths of all lengths open with positive probability.

Proof. Negation of proposition 138. �

The shortest possible Bernoulli model on a tree with p = 1
2

is given by
the repetition of the following sequence of events: #4,#10,#13,#7. If one
wants a percolation such that ∀n ∈ N : P (Yn = 1|Yn−1 = . . . = Y1 = 1) =
P (Yn = 1|Yn−1) then the only candidates are percolations based on events
#12 or #14.

6.8 A related problem

A related problem to 1-independent percolation is the following: denoting n
linear 1-independent Bernoulli random variables with parameter p by {Yi}ni=1,
we may ask for the value of

pn = max {p : ∀ {Yi}ni=1as above P (Y1 = . . . = Yn = 1) = 0}?

We can give some bounds for pn. If p > 3
4
, then

P p(Y1 = . . . = Yn = 1)

≥ P can(N)
p (Y1 = . . . = Yn = 1) by lemmata 123 and 124

=
n∏
i=1

ci ≥
n∏
i=1

c(p) see model 115

= c(p)n > 0 by proposition 114,

hence ∀n ∈ N : pn ≤ 3
4
. On the other hand, we have p2 = 1

2
, p3 =

√
5−1
2

,
p4 = 2

3
and p5 ∼ 0.73205 (approximated by a linear program) and in general
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∀n ∈ N : pn ≤ pn+1, but at the moment it is not clear whether pn −−−→
n→∞

3
4
.

As this problem is equivalent to finding a 1-independent percolation with
parameter 3

4
on a ray which never percolates, it embodies the essential aspects

of the problem of determining if p1
max(T ) is indeed 3

4
.
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7 K-independent percolation on trees

Here we present the theorems about k-independent percolation for k > 1.
Thoughts and musings are treated in section 8.

7.1 pkmin(T ) for k ≥ 2

As usual, let T = (V,E) be a leafless, locally finite tree with finite branching
number and if necessary rooted at o. The results in this section subsume the
results of section 6.6 and extend them to general k.

Model 140 Add a path of length k at o to T and call the resulting tree
T ′ = (V ′, E ′). Proposition 44 asserts br(T ′) = br(T ). Root T ′ at the leaf-
node o′ of the added path. Take a P k+1

√
p(E

′) {Xe}e∈E′ for k+1
√
p > 1

br(T )
and

construct the minimal model of k-independent bond percolation with
parameter p, abbreviated Pk,min

p (E), {Ye}e∈E from it by setting

{Ye = 1} = {Xe = Xf1 = . . . = Xfk
= 1}⇒P (Ye = 1) = p, (71)

where f1, . . . , fk are the k next edges on the path from p(v(e)) to o′ in T ′.

Lemma 141

∀ k ∈ N : pkmin(T ) ≤ 1

br(T )k+1
.

Proof. For the Pk,min
p (E) as constructed in 140 we have

{Xe}e∈E′ percolates by theorem 102

⇔P (o′↔∞) > 0 for P k+1
√
p(E

′) by theorem 78

⇒P (o↔∞) > 0 for Pkp(E) by the construction

⇔{Ye}e∈E percolates by theorem 78.

We conclude as we find such a percolating Pkp(E) for all p > 1

br(T )k+1 . �

Lemma 142

∀ k ∈ N : pkmin(T ) ≥ 1

br(T )k+1
.
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Proof. For any Pkp(E) the 1st moment method (see 81) results in

P (o↔∞)

≤ inf
Π∈Π(o)

∑
e∈Π

P (e ∈ C(o))

≤ inf
Π∈Π(o)

∑
e∈Π

p

‰
lv(e)
k+1

ı
by (12) in proposition 64

≤ inf
Π∈Π(o)

∑
e∈Π

(
p−

1
k+1

)−(k+1)

‰
lv(e)
k+1

ı

≤ inf
Π∈Π(o)

∑
e∈Π

(
p−

1
k+1

)−lv(e)

as (k + 1)

⌈
lv(e)

k + 1

⌉
> lv(e)

which implies that we have

Pkp(E) percolates

⇔P (o↔∞) > 0 by theorem 78

⇒ inf
Π∈Π(o)

∑
e∈Π

(
p−

1
k+1

)−lv(e)

> 0

⇒ p−
1

k+1 ≤ br(T ) by definition 40

⇔ p ≥ 1

br(T )k+1
.

�

Theorem 143

∀ k ∈ N : pkmin(T ) =
1

br(T )k+1
.

Proof. Combine lemmata 141 and 142. �
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8 Summary and outlook

8.1 Summary of results

The principal results are summarized in table 3 and plotted in figure 6. There
are a few observations one can make from looking at all those results together.

First, one clearly sees the ordering of critical values for the different per-
colation classes as stated in lemma 80.

Then one can see the uniformity of the results for pc(T ) = p0
min(T ),

p1
min(T ) and p2

min(T ) which is due to the the common use of the 1st mo-
ment method in the proof of all of these (see proposition 98, theorem 136
and lemma 142 for the respective uses for k = 0, 1, 2).

Finally, one can see that the same can’t be said for pc(T ) = p0
max(T ) and

p1
max(T ): the exact value of p1

max(T ) isn’t even known for 2 < br(T ) (indicated
by an ”?” in figure 6), except for the fact that it lies closely below 3

4
(read

also the discussion in section 6.8).

p2
min(T ) =

1

br(T )3 theorem 143 for k = 2 on page 62

p1
min(T ) =

1

br(T )2 by theorem 136 on page 55

pc(T ) =
1

br(T )
by theorem 102 on page 34

p1
max(T ) =

{
1− br(T )−1

br(T )2 br(T ) ∈ [1, 2]

∈ [1
2
, 3

4
] 2 < br(T )

by theorem 130

corollary 131 and proposition 133

Table 3: Summary of Results

8.2 Open questions

There are two main questions remaining open: The value of p2
max(T ) for

2 < br(T ) (indicated by ”?” in figure 6 on page 64) and knowledge about
pkmax(T ) for higher k.
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Figure 6: Plot of the critical values: see their definitions in table 3

At the core of the first problem is the inadequacy of the subset of the
Bernoulli models from section 6.7 to capture all critical aspects of 1-inde-
pendent bond percolation. The tighest bounds they yield imply that p1

max(T ) ∈
[1
2
, 3

4
] by using the impossible model 132 on page 53. The best current guess

(see section 6.8) would be that indeed p1
max(T ) = 3

4
, but no proof is known

to me yet.

Two possible directions open from there: the first would be to look at
general models of 1-independent Bernoulli variables and construct from them
stricter lower bounds. This would imply investigating their σ-algebras and
trying to build models directly on them. The second direction would be to
find the subclass of 1-independent percolations for which once can show that
they tend asymptotically to 1

2
(via exponential intersection tails and a suit-

able percolation ray kernel).

As for the second question, the most direct approach would be to try to
mimic the behaviour of the canonical model 115 detailled in proposition 127
by searching for 2-independent models which minimize P (Yi+3 = 1|Yi+2 =
Yi+1 = 1) or P (Yi+3 = Yi+2 = 1|Yi+1 = 1) for any three Bernoulli random
variables Yi+3, Yi+2, Yi+1 along a ray. Here again the most simple class of
models would be the one built from independent Bernoulli random variables
on edges: ∀ e ∈ E : Ye = Fe({Xf}f v e).
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